Log in

Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, basing on the subgradient extragradient method and inertial method with line-search process, we introduce two new algorithms for finding a common element of the solution set of a variational inequality and the fixed point set of a quasi-nonexpansive map** with a demiclosedness property. The weak convergence of the algorithms are established under standard assumptions imposed on cost operators. The proposed algorithms can be considered as an improvement of the previously known inertial extragradient method over each computational step. Finally, for supporting the convergence of the proposed algorithms, we also consider several preliminary numerical experiments on a test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Ya.I., Iusem, A.N.: Extension of subgradient techniques for nonsmooth optimization in Banach spaces. Set Valued Anal. 9, 315–335 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dam**. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2, 1–34 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179, 278–310 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bot, R., Csetnek, E., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bot, R., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bot, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithm. 71, 519–540 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithm. 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ceng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10, 1293–1303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations. In: Springer Verlag Series: Lecture Notes in Mathematics. ISBN: 978-1-84882-189-7, vol. 1965, p 326p. XVII (2009)

  20. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaz, J.B., Metcalf, F.T.: Subsequential limit points of successive approximations. Proc. Amer. Math. Soc. 135, 459–485 (1969)

    MathSciNet  MATH  Google Scholar 

  22. Dong, L.Q., Cho, J.Y., Zhong, L.L., Rassias, M.Th.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0506-0

  23. Dotson, W.G.: Fixed points of quasi-nonexpansive map**s. J. Austral. Math. Soc. 13, 167–170 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dotson, W.G.: An iterative process for nonlinear monotonic nonexpansive operators in Hilbert spaces. Math. Comp. 32, 223–225 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive map**. SIAM J. Optim. 19, 1881–1893 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iiduka, H., Yamada, I.: A subgradient-type method for the equilibrium problem over the fixed point set and its applications. Optimization. 58, 251–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive map**s and inversestrongly monotone map**s. Nonlinear Anal. 61, 341–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive map**s. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  29. Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem. Lect. Appl. Math. 26, 265–284 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Hieu, DV, Anh, PK, Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomikai Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maingé, P. E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maingé, P. E.: Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints. Eur. J. Oper. Res. 205, 501–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maingé, P. E.: Inertial iterative process for fixed points of certain quasi-nonexpansive map**s. Set Valued Anal. 15, 67–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maingé, P. E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maingé, P. E., Gobinddass, M.L.: Convergence of one step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive map**s and Lipschitz-continuous monotone map**s. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive map**s and monotone map**s. J. Optim. Theory Appl. 128, 191–201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Polyak, B.T.: Some methods of speeding up the convergence of iterarive methods. Z. Vychislitel’noi Matematiki Matematicheskoi Fiziki 4, 1–17 (1964)

    Google Scholar 

  46. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  47. Senter, H.F., Dotson, W.G.: Approximating fixed points of nonexpansive map**s. Proc. Amer. Math. Soc. 44, 375–380 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  48. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive map**s and monotone map**s. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 19, 1481–1499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numerical Algorithms (2017). https://doi.org/10.1007/s11075-017-0412-z

  51. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 67, 83–102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 19, 3029–3051 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numerical Algorithms (2017). https://doi.org/10.1007/s11075-017-0452-4

  54. Thong D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  55. **u, N.H., Zhang, J.Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–587 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for valuable suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Hieu, D.V. Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor 80, 1283–1307 (2019). https://doi.org/10.1007/s11075-018-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0527-x

Keywords

Mathematics Subject Classification (2010)

Navigation