Log in

A misaligned formulation for planetary gears with analytical 3D contact characterization

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the study of planetary drivetrains the substantially high transmitted loads lead to significant deflections in the supporting gear structures, which directly impact the gear pair alignment and alter the gear meshing. This contribution proposes an analytical formulation to model misaligned planetary gears by means of distributed gear contact forces. The presented model relies on a thin-sliced approach for the computation of misaligned contact forces, where the two main nonlinear phenomena affecting contact force accuracy are: (1) variable contact stiffness, and (2) contact detection and compression assessment. With regard to the former, this contribution proposes an internal gear extension of the analytical contact compliance approach previously developed by the authors for external gears. With regard to the latter, this contribution proposes a novel technique for analytical misaligned contact detection for three-dimensional helical gear contact. The model is validated with quasi-static simulations, including gear microgeometry modifications and misalignments, by comparison to numerical results. The computational efficiency of the presented method is enhanced by two kinds of contributions: a linearization of the compliance model to speed up the contact force computation, and an analytical contact Jacobian formulation. The availability of an efficient planetary gear contact model uncovers many interesting applications in the design and operational phases merged with digital twins frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Algorithm 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Data availability

Data used during the study will be made available on request to the corresponding author.

Abbreviations

\(a_w\) :

Working center distance

b :

Face width

\(C_{\alpha a}\) :

Amount of tip relief

\(c_{ij}\) :

Coupling compliance of slice i to j

\(c'\) :

Compliance per unit width

d :

Diameter of the gear

\(d_{Ca}\) :

Tip relief datum diameter

E :

Young’s modulus of elasticity

F :

Generalized gear contact forces

f :

Normal contact force

\(f'\) :

Force per unit width

G :

Shear modulus of rigidity

\(\bar{G}\) :

Rotational matrix in multi-body frame

J :

Jacobian matrix

K :

Stiffness matrix

\(K_{H \beta }\) :

Face load factor

k :

Gear pair mesh stiffness

M :

Generalized contact moments

N :

Number of discrete slices

\(N_p\) :

Number of planets

\(\textbf{n}\) :

Unit surface normal

\(p_{ref}\) :

Position reference point

Q :

Vector of generalized forces

q :

Vector of generalized coordinates

R :

3D rotation matrix in Bryant angles

\(T_1\) :

Tangency point at base circle

\(\tilde{\bar{u}}^i\) :

Position matrix in multi-body frame

\(Y_1\) :

Point of contact on involute

\(y_M\) :

Tooth base clam** point

\(y_P\) :

Projection of force application point

\(z_{1,2}\) :

Number of gear teeth

\(\alpha \) :

Pressure angle

\(\beta \) :

Helix angle

\(\delta \) :

Gear pair normal compression

\(\theta \) :

Bryant angle along z-direction

\(\theta _{CD} \) :

Angle of center distance line

\(\nu \) :

Poisson’s ratio

\(\xi \) :

Rolling angle

\(\varphi \) :

Bryant angle along x-direction

\(\psi \) :

Bryant angle along y-direction

A :

Axial plane stiffness

a :

Tip diameter

B :

Tooth bending stiffness

b :

Base cylinder or bearings

c :

Gear contact or carrier

ext :

External loads

f :

Root diameter or body stiffness

G :

Global gear frame

g :

Gravity forces

h :

Hertz contact stiffness

i :

Slice number

j :

Adjacent slice number

L :

Local gear frame

mis :

Gear misalignments

micro :

Microgeometry modifications

n :

Normal section or surface normal

o :

Outer rim diameter

p :

Planet quantities

pin :

Planet-carrier pin

R :

Tooth radial stiffness

r :

Ring quantities

S :

Tooth shear stiffness

s :

Sun quantities

T :

Tangency point or to transverse plane

t :

Transverse section

w :

Working values of gear pair

y :

Current point of gear contact

c :

Coupled slices approach

m :

Tooth number

n :

N-th planet gear

u :

Uncoupled slices approach

References

  1. Sun, T., Hu, H.Y.: Nonlinear dynamics of a planetary gear system with multiple clearances. Mech. Mach. Theory 38, 1371–1390 (2003)

    Article  Google Scholar 

  2. Kahraman, A.: Load sharing characteristics of planetary transmissions. Mech. Mach. Theory 29, 1151–1165 (1994)

    Article  MathSciNet  Google Scholar 

  3. Eritenel, T., Parker, R.G.: Modal properties of three-dimensional helical planetary gears. J. Sound Vib. 325, 397–420 (2009)

    Article  Google Scholar 

  4. Parker, R.G., Lin, J.: Mesh phasing relationships in planetary and epicyclic gears. J. Mech. Des. Trans. ASME 126, 365–370 (2004)

    Article  Google Scholar 

  5. Lin, J., Parker, R.G.: Structured vibration characteristics of planetary gears with unequally spaced planets. J. Sound Vib. 933, 921–928 (2000)

    Article  Google Scholar 

  6. Gu, X., Velex, P.: A dynamic model to study the influence of planet position errors in planetary gears. J. Sound Vib. 331, 4554–4574 (2012)

    Article  Google Scholar 

  7. Guo, Y., Parker, R.G.: Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. Eur. J. Mech. A/Solids 29, 1022–1033 (2010)

    Article  Google Scholar 

  8. Cooley, C.G., Parker, R.G.: A review of planetary and epicyclic gear dynamics and vibrations research. Appl. Mech. Rev. 66, 040804 (2014)

    Article  Google Scholar 

  9. Abousleiman, V., Velex, P., Becquerelle, S.: Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers. J. Mech. Des. Trans. ASME 129, 95–106 (2007)

    Article  Google Scholar 

  10. Hu, Y., Talbot, D., Kahraman, A.: A load distribution model for planetary gear sets. J. Mech. Des. 140, 053302 (2018)

    Article  Google Scholar 

  11. Vijayakar, S., Busby, H., Wilcox, L.: Finite element analysis of three-dimensional conformal contact with friction. Comput. Struct. 33, 49–61 (1989)

    Article  Google Scholar 

  12. Parker, R.G., Vijayakar, S.M., Imajo, T.: Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons. J. Sound Vib. 237, 435–455 (2000)

    Article  Google Scholar 

  13. Blockmans, B.: Model reduction of contact problems in flexible multibody dynamics. Ph.D. thesis, KU Leuven (2018)

  14. Benaïcha, Y., Perret-Liaudet, J., Beley, J.-D., Rigaud, E., Thouverez, F.: On a flexible multibody modelling approach using FE-based contact formulation for describing gear transmission error. Mech. Mach. Theory 167, 104505 (2022)

    Article  Google Scholar 

  15. Vijayakar, S.: A combined surface integral and finite element solution for a three-dimensional contact problem. Int. J. Numer. Methods Eng. 31, 525–545 (1991)

    Article  Google Scholar 

  16. Vedmar, L., Andersson, A.: A method to determine dynamic loads on spur gear teeth and on bearings. J. Sound Vib. 267, 1065–1084 (2003)

    Article  Google Scholar 

  17. Andersson, A., Vedmar, L.: A dynamic model to determine vibrations in involute helical gears. J. Sound Vib. 260, 195–212 (2003)

    Article  Google Scholar 

  18. Miler, D., Hoić, M.: Optimisation of cylindrical gear pairs: a review. Mech. Mach. Theory 156, 104156 (2021)

    Article  Google Scholar 

  19. Diez-Ibarbia, A., Sanchez-Espiga, J., Fernandez-del-Rincon, A., Calvo-Irisarri, J., Iglesias, M., Viadero, F.: Probabilistic analysis of the mesh load factor in wind-turbine planetary transmissions: tooth thickness errors. Mech. Mach. Theory 185, 105341 (2023). https://doi.org/10.1016/j.mechmachtheory.2023.105341

    Article  Google Scholar 

  20. Houser, D.R.: The effect of manufacturing microgeometry variations on the load distribution factor and on gear contact and root stresses. In: American Gear Manufacturers Association—American Gear Manufacturers Association Fall Technical Meeting 2008 (2008)

  21. Duan, T., Wei, J., Zhang, A., Xu, Z., Lim, T.C.: Transmission error investigation of gearbox using rigid-flexible coupling dynamic model: theoretical analysis and experiments. Mech. Mach. Theory 157, 104 (2021)

    Article  Google Scholar 

  22. Feng, K., Ji, J.C., Ni, Q., Beer, M.: A review of vibration-based gear wear monitoring and prediction techniques. Mech. Syst. Signal Process. 182, 109605 (2023)

    Article  Google Scholar 

  23. Moghadam, F.K., Nejad, A.R.: Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mech. Syst. Signal Process. 162, 108087 (2022)

    Article  Google Scholar 

  24. He, B., Liu, L., Zhang, D.: Digital twin-driven remaining useful life prediction for gear performance degradation: a review. J. Comput. Inf. Sci. Eng. 21, 030801 (2021)

    Article  Google Scholar 

  25. ISO: Calculation of load capacity of spur and helical gears. ISO 6336, 1996 (2006)

  26. Maatar, M., Velex, P.: An analytical expression for the time-varying contact length in perfect cylindrical gears: some possible applications in gear dynamics. J. Mech. Des. Trans. ASME 118, 586–589 (1996)

    Article  Google Scholar 

  27. Cai, Y., Hayashi, T.: The linear approximated equation of vibration of a pair of spur gears (theory and experiment). J. Mech. Des. 116, 558–564 (1994)

    Article  Google Scholar 

  28. Cai, Y.: Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon (a new stiffness function of helical involute tooth pair). J. Mech. Des. 117, 460–469 (1995)

    Article  Google Scholar 

  29. Kuang, J.H., Yang, Y.T.: An estimate of mesh stiffness and load sharing ratio of a spur gear pair. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6th Intern, pp. 1–9 (1992)

  30. Smith, J.D.: Estimation of the static load distribution factor for helical gears. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 209, 193–199 (1995)

  31. Jordan, J.M., Blockmans, B., Desmet, W.: A linear formulation for misaligned helical gear contact analysis using analytical contact stiffnesses. Mech. Mach. Theory 187, 105373 (2023)

    Article  Google Scholar 

  32. Sainsot, P., Velex, P.: On contact deflection and stiffness in spur and helical gears. Mech. Mach. Theory 154, 104049 (2020)

    Article  Google Scholar 

  33. Kahraman, A.: Natural modes of planetary gear trains. J. Sound Vib. 173, 125–130 (1994)

    Article  Google Scholar 

  34. Saada, A., Velex, P.: An extended model for the analysis of the dynamic behavior of planetary trains. J. Mech. Des. Trans. ASME 117, 513–520 (1995)

    Article  Google Scholar 

  35. Lin, J., Parker, R.G.: Analytical characterization of the unique properties of planetary gear free vibration. J. Vib. Acoust. Trans. ASME 121, 316–321 (1999)

    Article  Google Scholar 

  36. Kahraman, A.: Planetary gear train dynamics. J. Mech. Des. Trans. ASME 116, 713–720 (1994)

    Article  Google Scholar 

  37. Abousleiman, V., Velex, P.: A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets. Mech. Mach. Theory 41, 725–748 (2006)

    Article  Google Scholar 

  38. Al-shyyab, A., Kahraman, A.: A non-linear dynamic model for planetary gear sets. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 221, 567–576 (2007)

  39. Cunliffe, F., Smith, J.D., Welbourn, D.B.: Dynamic tooth loads in epicyclic gears. J. Manuf. Sci. Eng. Trans. ASME 96, 578–584 (1974)

    Article  Google Scholar 

  40. Botman, M.: Epicyclic gear vibrations. J. Manuf. Sci. Eng. Trans. ASME 98, 811–815 (1976)

    Article  Google Scholar 

  41. Pintz, A., Kasuba, R., Frater, J.L. August, R.: Dynamic effects of internal spur gear drives. NASA Contractor Reports (1983)

  42. Kahraman, A.: Static load sharing characteristics of transmission planetary gear sets: mModel and experiment. SAE Technical Papers (1999)

  43. Kahraman, A., Vijayakar, S.: Effect of internal gear flexibility on the quasi-static behavior of a planetary gear set. J. Mech. Des. Trans. ASME 123, 408–415 (2001)

    Article  Google Scholar 

  44. Kahraman, A., Kharazi, A.A., Umrani, M.: A deformable body dynamic analysis of planetary gears with thin rims. J. Sound Vib. 262, 752–768 (2003)

    Article  Google Scholar 

  45. Bodas, A., Kahraman, A.: Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 47, 908–915 (2004)

    Google Scholar 

  46. Ligata, H., Kahraman, A., Singh, A.: A closed-form planet load sharing formulation for planetary gear sets using a translational analogy. J. Mech. Des. Trans. ASME 131, 021007 (2009)

    Article  Google Scholar 

  47. Singh, A.: Load sharing behavior in epicyclic gears: physical explanation and generalized formulation. Mech. Mach. Theory 45, 511–530 (2010)

    Article  Google Scholar 

  48. Lin, J., Parker, R.G.: Sensitivity of planetary gear natural frequencies and vibration modes to model parameters. J. Sound Vib. 228, 109–128 (1999)

    Article  Google Scholar 

  49. Parker, R.G., Agashe, V., Vijayakar, S.M.: Dynamic response of a planetary gear system using a finite element/contact mechanics model. J. Mech. Des. Trans. ASME 122, 304–310 (2000)

    Article  Google Scholar 

  50. Parker, R.G.: Physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. J. Sound Vib. 236, 561–573 (2000)

    Article  Google Scholar 

  51. Wu, X., Parker, R.G.: Modal properties of planetary gears with an elastic continuum ring gear. J. Appl. Mech. Trans. ASME 75, 1–12 (2008)

    Article  Google Scholar 

  52. Parker, R.G., Guo, Y.: Dynamic analysis of planetary gears with bearing clearance. J. Comput. Nonlinear Dyn. 7, 1–15 (2012)

    Google Scholar 

  53. Guo, Y., Keller, J., Parker, R.G.: Nonlinear dynamics and stability of wind turbine planetary gear sets under gravity effects. Eur. J. Mech. A/Solids 47, 45–57 (2014)

    Article  Google Scholar 

  54. Gu, X., Velex, P.: A lumped parameter model to analyse the dynamic load sharing in planetary gears with planet errors. Appl. Mech. Mater. 86, 374–379 (2011)

    Article  Google Scholar 

  55. Gu, X., Velex, P.: On the dynamic simulation of eccentricity errors in planetary gears. Mech. Mach. Theory 61, 14–29 (2013)

    Article  Google Scholar 

  56. Walha, L., Fakhfakh, T., Haddar, M.: Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash. Mech. Mach. Theory 44, 1058–1069 (2009)

    Article  Google Scholar 

  57. Zhang, L., Wang, Y., Wu, K., Sheng, R., Huang, Q.: Dynamic modeling and vibration characteristics of a two-stage closed-form planetary gear train. Mech. Mach. Theory 97, 12–28 (2016)

    Article  Google Scholar 

  58. Chen, Z., Shao, Y.: Dynamic features of a planetary gear system with tooth crack under different sizes and inclination angles. J. Vib. Acoust. Trans. ASME 135, 031004 (2013)

    Article  Google Scholar 

  59. Chaari, F., Fakhfakh, T., Haddar, M.: Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. J. Fail. Anal. Prev. 6, 73–78 (2006)

    Article  Google Scholar 

  60. Chapron, M., Velex, P., Bruyère, J., Becquerelle, S.: Optimization of profile modifications with regard to dynamic tooth loads in single and double-helical planetary gears with flexible ring-gears. J. Mech. Des. Trans. ASME 138, 023301 (2016)

    Article  Google Scholar 

  61. Yuksel, C., Kahraman, A.: Dynamic tooth loads of planetary gear sets having tooth profile wear. Mech. Mach. Theory 39, 695–715 (2004)

    Article  Google Scholar 

  62. Peeters, J.L., Vandepitte, D., Sas, P.: Analysis of internal drive train dynamics in a wind turbine. Wind Energy 9, 141–161 (2006)

    Article  Google Scholar 

  63. Hidaka, T., Terauchi, Y., Nohara, M., ichi Oshita, J.: Dynamic behavior of planetary gear-3. Displacement of ring gear in direction of line of action. Bull. JSME 20, 1142–1149 (1977)

    Article  Google Scholar 

  64. Chen, Z., Shao, Y.: Dynamic simulation of planetary gear with tooth root crack in ring gear. Eng. Fail. Anal. 31, 8–18 (2013)

    Article  Google Scholar 

  65. Chen, Z.G., Zhai, W.M., Shao, Y.M., Wang, K.Y.: Mesh stiffness evaluation of an internal spur gear pair with tooth profile shift. Sci. China Technol. Sci. 59, 1328–1339 (2016)

    Article  Google Scholar 

  66. Liang, X., Zuo, M.J., Patel, T.H.: Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 535–547 (2014)

    Article  Google Scholar 

  67. Liang, X., Zuo, M.J., Pandey, M.: Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mech. Mach. Theory 76, 20–38 (2014)

    Article  Google Scholar 

  68. Weber, C., Banaschek, K.: The Deformation of Loaded Gears and the Effect on Their Load Carrying Capacity (Part I). DSIR, London (1949)

    Google Scholar 

  69. Li, H., Liu, J., Ma, J., Shao, Y.: Effect of the radial support stiffness of the ring gear on the vibrations for a planetary gear system. J. Low Freq. Noise Vib. Active Control 39, 1024–1038 (2020)

    Article  Google Scholar 

  70. Wang, Q., Zhao, B., Fu, Y., Kong, X., Ma, H.: An improved time-varying mesh stiffness model for helical gear pairs considering axial mesh force component. Mech. Syst. Signal Process. 106, 413–429 (2018)

    Article  Google Scholar 

  71. **e, C., et al.: Analytical formulas for gear body-induced tooth deflections of spur gears considering structure coupling effect. Int. J. Mech. Sci. 148, 174–190 (2018)

    Article  Google Scholar 

  72. Singh, A.: Application of a system level model to study the planetary load sharing behavior. J. Mech. Des. Trans. ASME 127, 469–476 (2005)

    Article  Google Scholar 

  73. Chen, Z., Shao, Y.: Mesh stiffness of an internal spur gear pair with ring gear rim deformation. Mech. Mach. Theory 69, 1–12 (2013)

    Article  Google Scholar 

  74. Chen, Z., Shao, Y., Su, D.: Dynamic simulation of planetary gear set with flexible spur ring gear. J. Sound Vib. 332, 7191–7204 (2013)

    Article  Google Scholar 

  75. Fan, Z., Zhu, C., Song, C.: Dynamic analysis of planetary gear transmission system considering the flexibility of internal ring gear. Iran. J. Sci. Technol. Trans. Mech. Eng. 44, 695–706 (2020)

    Article  Google Scholar 

  76. Luo, Y., Cui, L., Ma, J.: Effect of bolt constraint of ring gear on the vibration response of the planetary gearbox. Mech. Mach. Theory 159, 104260 (2021)

    Article  Google Scholar 

  77. Tavassoli, S., Poursina, M., Poursina, D.: An analytical determining the internal ring gear rim stiffness for practical purpose. J. Mech. Sci. Technol. 35, 4617–4625 (2021)

    Article  Google Scholar 

  78. Hu, S., Fang, Z.: The analysis and modeling of the synthetical meshing stiffness of inner gearing considering the flexible inner ring gear. Shock Vib. 2019, 2324546 (2019)

    Google Scholar 

  79. Liu, J., Pang, R., Ding, S., Li, X.: Vibration analysis of a planetary gear with the flexible ring and planet bearing fault. Meas. J. Int. Meas. Confed. 165, 108100 (2020)

    Article  Google Scholar 

  80. Feng, S., Chang, L., He, Z.: A hybrid finite element and analytical model for determining the mesh stiffness of internal gear pairs. J. Mech. Sci. Technol. 34, 2477–2485 (2020)

    Article  Google Scholar 

  81. Sainsot, P., Velex, P., Duverger, O.: Contribution of gear body to tooth deflections-a new bidimensional analytical formula. J. Mech. Des. 126, 748–752 (2004)

    Article  Google Scholar 

  82. O’Donnell, W.J.: Stresses and deflections in built-in beams. J. Eng. Ind. 85, 265–272 (1963)

    Article  Google Scholar 

  83. Yin, Q.: Verfestigungs-und Schâdigungsverhalten von Blechwerkstoffen im ebenen Torsionsversuch. Ph.D. thesis, Dortmund, Technische Universität (2014)

  84. Cornell, R.W.: Compliance and stress sensitivity of spur gear teeth. J. Mech. Des. 103, 447–459 (1981)

    Google Scholar 

  85. Umezawa, K.: The meshing test on helical gears under load transmission: 2nd report, the approximate formula for bending-moment distribution of gear tooth. Bull. JSME 16, 407–413 (1973)

    Article  Google Scholar 

  86. Wellauer, E.J., Seireg, A.: Bending strength of gear teeth by cantilever-plate theory. J. Eng. Ind. 82, 213–220 (1960)

  87. ISO. 21771: 2007 (E), Gears–Cylindrical Involute Gears and Gear Pairs–Concepts and Geometry. International Organization for Standardization, Geneva, Switzerland (2007)

    Google Scholar 

  88. Eritenel, T., Parker, R.G.: An investigation of tooth mesh nonlinearity and partial contact loss in gear pairs using a lumped-parameter model. Mech. Mach. Theory 56, 28–51 (2012)

    Article  Google Scholar 

  89. Jones, R.G.: The mathematical modelling of gearbox vibration under applied lateral misalignment. Thesis (Ph.D.), University of Warwick (2012). http://wrap.warwick.ac.uk/54939/

  90. Cappellini, N. et al.: Reduced-order modelling of multibody contact problems: a novel semi-analytic method (2017). https://doi.org/10.1115/DETC2017-67948

  91. Marco, I., Jordan, J., Blockmans, B., Desmet, W.: Analytical lumped-parameter model of misaligned gear contacts for efficient system level drivetrain simulations. IDETC CIE (ASME) 1, 1–11 (2022)

    Google Scholar 

  92. Ryali, L., Talbot, D.: A dynamic load distribution model of planetary gear sets. Mech. Mach. Theory 158, 104229 (2021)

    Article  Google Scholar 

  93. Artoni, A., Guiggiani, M., Kahraman, A., Harianto, J.: Robust optimization of cylindrical gear tooth surface modifications within ranges of torque and misalignments. J. Mech. Des. 135, 121 (2013). https://doi.org/10.1115/1.4025196

    Article  Google Scholar 

Download references

Funding

This research was partially supported by Flanders Make, the strategic research centre for the manufacturing industry. The Research Foundation - Flanders (FWO), Belgium is gratefully acknowledged for its support through research Grant No. S006519N. Internal Funds KU Leuven are gratefully acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Marco Jordan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, J.M., De Smet, B., Blockmans, B. et al. A misaligned formulation for planetary gears with analytical 3D contact characterization. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09917-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09917-w

Keywords

Navigation