Log in

Security-protocol-based sliding mode control for singularly perturbed complex networks with dual-layer switching mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the challenges pertaining to security–protocol–based sliding mode control (SMC) for singularly perturbed complex networks (SPCNs), where the sensor-observer channel is susceptible to false data injection (FDI) attacks employing a multi-strategy attack (MSA) model. By leveraging singular perturbation theory, we introduce a two-time-scaling approach that incorporates both fast and slow states to accurately model the dynamics of the complex networks (CNs), resulting in more realistic network representations. Firstly, the system model simultaneously considers a more general dual-layer switching frame, encompassing Markov stochastic switching and persistent dwell-time(PDT) arbitrary switching, and to mitigate network communication burden and optimize bandwidth utilization, a weighted-try-once-discard (WTOD) protocol with a hybrid compensation method (HCM) is synthesized, enabling the derivation of compensatory measurements that closely approximate real values; Secondly, a sliding mode controller (SMCE) is formulated to drive the state into the sliding domain surrounding the pre-specified sliding mode surface (SMS), moreover, by employing the Lyapunov approach, some sufficient conditions are established to guarantee the stability of the sliding mode dynamics (SMD), along with the resulting closed-loop system (CLS) exhibiting the desired \(H_{\infty }\) performance; Finally, a practical example of a mass-spring-damper system is provided to demonstrate the feasibility and effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

This paper has no associated data for using.

References

  1. Cai, C., Wang, Z., **g, X., Liu, X., Alsaad, F.E.: An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks. IEEE Trans. Cybern. 45(8), 1597–1609 (2015)

    Google Scholar 

  2. Wan, X., Wang, Z., Wu, M., Liu, X.: \(H_{\infty }\) state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans. Syst. Man Cybern.: Syst. 30(2), 415–426 (2019)

  3. Shen, H., Hu, X., Wu, X., He, S.: Generalized dissipative state estimation of singularly perturbed switched complex dynamic networks with persistent dwell-time mechanism. IEEE Trans. Syst. Man Cybern.: Syst. 52(3), 1795–1806 (2022)

    Google Scholar 

  4. Cheng, Y., Zhang, R., Liu, Y., **ao, J.: Secure synchronization control for a class of complex time-Delay dynamic networks against denial-of-service attacks. J. Franklin Inst. 360(11), 7535–7538 (2023)

    MathSciNet  Google Scholar 

  5. Boukas, E.-K.: Stochastic Switching Systems: Analysis and Design. Birkhauser, Berlin, Germany (2005)

    Google Scholar 

  6. Dong, S., Philip Chen, C.L., Fang, M., Wu, Z.-G.: Dissipativity-based asynchronous fuzzy sliding mode control for T-S fuzzy hidden markov jump systems. IEEE Trans. Cybern. 50(1), 180–186 (2014)

    Google Scholar 

  7. Xue, M., Yan, H., Zhang, H., Sun, J., Lam, H.-K.: Hidden-Markov-model-based asynchronous \(H_{\infty }\) tracking control of Fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 29(5), 1081–1092 (2021)

    Google Scholar 

  8. Wang, J., Yang, C., Shen, H., Cao, J., Rutkowski, L.: Sliding-mode control for slow-sampling singularly perturbed systems subject to Markov jump parameters. IEEE Trans. Syst. Man Cybern.: Syst. 51(12), 7579–7586 (2021)

    Google Scholar 

  9. Yuan, S., Zhang, L., De Schutter, B., Bald, S.: Anovel Lyapunov function for a non-weighted \(L_{2}\) gain of asynchronously switched linear system. Automatica 87, 310–317 (2018)

    Google Scholar 

  10. Zhang, L., Zhu, Y., Zheng, W.X.: Energy-to-peak state estimation for Markov jump RNNs with timevarying delays via nonsynchronous filter with nonstationary mode transitions. IEEE Trans. Nerual Netw. Learn. Syst. 26(10), 2346–2356 (2015)

    Google Scholar 

  11. Cheng, J., Wang, Y., Park, J.H., Shi, K.: Static output feedback quantized control for fuzzy Markovian switching singularly perturbed systems with deception attacks. IEEE Trans. Fuzzy Syst. 30(4), 1036–1047 (2022)

    Google Scholar 

  12. Li, H., Wang, Y., Yao, D., Renquan, L.: A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)

    MathSciNet  Google Scholar 

  13. Zhang, L., Yang, T., Shi, P., Zhu, Y.: Analysis and Design of MarkovJump Systems With Complex Transition Probabilities. Springer, Switzerland (2016)

    Google Scholar 

  14. **ang, W., **ao, J.: Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica 50, 940–945 (2014)

    MathSciNet  Google Scholar 

  15. Sun, T., Zhou, D., Zhu, Y., Basin, M.V.: Stability, \(l_{2}\)-gain analysis, and parity space-based fault detection for discrete-time switched systems under dwell-time switching. IEEE Trans. Syst. Man Cybern.: Syst. 50(9), 3358–3368 (2020)

    Google Scholar 

  16. Niu, B., Karimi, H.R., Wang, H., Liu, Y.: Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1371–1382 (2017)

    Google Scholar 

  17. Wang, J., **a, J., Shen, H., **ng, M.: \(H_{\infty }\) synchronization for fuzzy markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule. IEEE Trans. Fuzzy Syst. 29(10), 3082–3092 (2021)

    Google Scholar 

  18. Zou, L., Wang, Z., Han, Q.-L., Zhou, D.: Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Autom. Control 62(12), 6582–6588 (2017)

    MathSciNet  Google Scholar 

  19. Zhang, D., Cai, W., **e, L., Wang, Q.-G.: Nonfragile distributed filtering for T-S fuzzy systems in sensor networks. IEEE Trans. Fuzzy Syst. 23(5), 1883–1890 (2015)

    Google Scholar 

  20. Shen, H., Huo, S., Cao, J., Huang, T.: Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels. IEEE Trans. Cybern. 49(4), 1292–1301 (2019)

    Google Scholar 

  21. Zhang, Z., Niu, Y., Cao, Z., Song, J.: Security sliding mode control of interval Type-2 fuzzy systems subject to cyber attacks: the stochastic communication protocol case. IEEE Trans. Fuzzy Syst. 29(2), 240–251 (2021)

    Google Scholar 

  22. Walsh, G.C., Ye, H., Bushnell, L.: Stability analysis of networked control systems. In: Proceedings of the American Control Conference, pp. 76–80, (1999)

  23. Yamei, J., Wei, G., Ding, D., Liu, S.: A novel fault detection method under weighted try-once-discard scheduling over sensor networks. IEEE Trans. Control Netw. Syst. 7(3), 1489–1499 (2020)

    MathSciNet  Google Scholar 

  24. Zou, L., Wang, Z., Gao, H.: Set-membership filtering for time-varying systems with mixed time-delays under Round-Robin and Weighted Try-Once-Discard protocols. Automatica 74, 341–348 (2016)

    MathSciNet  Google Scholar 

  25. Liu, C., Yang, L., Tao, J., Yong, X., Huang, T.: Set-membership filtering for complex networks with constraint communication channels. Neural Netw. 152, 479–486 (2022)

    Google Scholar 

  26. Zeng, P., Deng, F., Zhang, H., Gao, X.: Event-Based \(H_{\infty }\) control for discrete-Time fuzzy Markov jump systems subject to DoS attack. IEEE Trans. Autom. Control 30(6), 1853–1863 (2022)

    Google Scholar 

  27. Ding, D., Wang, Z., Han, Q.-L., We, G.: Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans. Syst. Man Cybern.: Syst. 48(5), 779–789 (2018)

    Google Scholar 

  28. Zhang, T.-Y., Ye, D.: False data injection attacks with complete stealthiness in cyber-physical systems: a self generated approach. Automatica 120, 109–117 (2020)

    MathSciNet  Google Scholar 

  29. He, W., Wenying, X., Ge, X., Han, Q.-L., Wenli, D., Qian, F.: Secure control of multiagent systems against malicious attacks: a brief survey. IEEE Trans. Ind. Inf. 18(6), 3595–3608 (2022)

    Google Scholar 

  30. Li, X.-M., Zhou, Q., Li, P., Renquan, L.: Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans. Cybern. 50(5), 1856–1866 (2020)

    Google Scholar 

  31. Li, X.-M., Zhou, Q., Li, P., Renquan, L.: Event-Triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans. Autom. Control 65(3), 1264–1271 (2020)

    Google Scholar 

  32. Kuppusamy, S., Joo, Y.H.: Memory-Based integral sliding-mode control for T-S fuzzy systems with PMSM via disturbance observer. IEEE Trans. Cybern. 51(5), 2457–2465 (2021)

    Google Scholar 

  33. Al-Holou, N., Lahdhiri, T., Joo, D.S., Weaver, J., Al-Abbas, F.: Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Trans. Fuzzy Syst. 10(2), 234–246 (2002)

    Google Scholar 

  34. Liao, K., Yan, X.: A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer. IEEE Trans. Ind. Inf. 14(7), 3076–3086 (2018)

    Google Scholar 

  35. Ding, S., Park, J.H., Chen, C.-C.: Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)

    MathSciNet  Google Scholar 

  36. Ding, S., Levant, A., Li, S.: Simple homogeneous sliding-mode controller. Automatica 67, 22–32 (2016)

    MathSciNet  Google Scholar 

  37. Wang, J., Ru, T., **, J., Shen, H., Sreeram, V.: Asynchronous event-triggered sliding mode control for semi-Markov jump systems within a finite-time interval. IEEE Trans. Circ. Syst. 68(1), 458–468 (2020)

    MathSciNet  Google Scholar 

  38. Song, J., Niu, Y., Zou, Y.: Asynchronous sliding mode control of Markovian jump systems with timevarying delays and partly accessible mode detection probabilities. Automatica 93, 33–41 (2018)

    MathSciNet  Google Scholar 

  39. Wang, J., Yang, C., **, J., Zheng-Guang, W., Shen, H.: Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol. IEEE Trans. Fuzzy Syst. 30(6), 1889–1899 (2022)

    Google Scholar 

  40. Sun, X., Zhang, Q.: Observer-based adaptive sliding mode control for T-S fuzzy singular systems. IEEE Trans. Syst. Man Cybern. 50(11), 4438–4446 (2020)

    Google Scholar 

  41. Li, J., Zhang, Q., Yan, X.-G., Spurgeon, S.K.: Observer-based fuzzy integral sliding mode control for nonlinear descriptor system. IEEE Trans. Fuzzy Syst. 26(5), 2818–2832 (2018)

    Google Scholar 

  42. Liu, X., **aojie, S., Shi, P., Shen, C.: Observer-based sliding mode control for uncertain fuzzy systems via event-triggered strategy. IEEE Trans. Fuzzy Syst. 27(11), 2190–2201 (2019)

    Google Scholar 

  43. Zhang, J., Zhu, F., Karimi, H.R., Wang, F.: Observer-based sliding mode control for T-S fuzzy descriptor systems with time delay. IEEE Trans. Fuzzy Syst. 27(10), 2009–2023 (2019)

    Google Scholar 

  44. Song, H., Yao, H., Peng, S., Li, Yu.: Distributed secure state estimation of multi-sensor systems subject to Two-Channel hybrid attacks. IEEE Trans. Singal Inform. Process. Over Netw. 8, 1049–1058 (2022)

    MathSciNet  Google Scholar 

  45. Li, Z.-M., Chang, X.-H., **ong, J.: Event-based fuzzy tracking control for nonlinear networked systems subject to dynamic quantization. IEEE Trans. Fuzzy Syst. 67(8), 4234–4240 (2022)

    Google Scholar 

  46. Li, F., Zheng, W.X., Shengyuan, X.: Stabilization of discrete-time hidden semi-Markov jump singularly perturbed systems with partially known emission probabilities. IEEE Trans. Autom. Control 329, 91–107 (2017)

    Google Scholar 

  47. Pan, Y., Yang, G.-H.: Event-triggered fuzzy control for nonlinear networked control system. Fuzzy Sets Syst. 329, 91–107 (2017)

    MathSciNet  Google Scholar 

  48. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiely, New York, NY, USA (2001)

    Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 11661028, the Natural Science Foundation of Guangxi under Grant 2020GXNSFAA159141, Guangxi Philosophy and Social Science Programming Project (2022) under Grant 22BTJ001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengzhuo Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luo, M., Cheng, J. et al. Security-protocol-based sliding mode control for singularly perturbed complex networks with dual-layer switching mechanism. Nonlinear Dyn 112, 1971–1995 (2024). https://doi.org/10.1007/s11071-023-09144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09144-9

Keywords

Navigation