Log in

Two-breather solutions for the class I infinitely extended nonlinear Schrödinger equation and their special cases

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We derive the two-breather solution of the class I infinitely extended nonlinear Schrödinger equation. We present a general form of this multi-parameter solution that includes infinitely many free parameters of the equation and free parameters of the two breather components. Particular cases of this solution include rogue wave triplets, and special cases of ‘breather-to-soliton’ and ‘rogue wave-to-soliton’ transformations. The presence of many parameters in the solution allows one to describe wave propagation problems with higher accuracy than with the use of the basic NLSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys. 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  3. Osborne, A.: Nonlinear Ocean Waves and the Inverse Scattering Transform. International Geophysics Series, vol. 97. Academic Press, Cambridge (2010)

    MATH  Google Scholar 

  4. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Onorato, M., Proment, D., Clauss, G., Klein, M.: Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Kee** Test. PLoS ONE 8, e5462 (2013)

    Article  Google Scholar 

  6. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  7. Agrawal, G.P.: Nonlinear Fiber Optics (Optics and Photonics), 4th edn. Elsevier, Amsterdam (2006)

    Google Scholar 

  8. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006)

    Article  Google Scholar 

  9. Theocharis, G., Rapti, Z., Kevrekidis, P., Frantzeskakis, D., Konotop, V.: Modulational instability of Gross–Pitaevskii-type equations in 1+1 dimensions. Phys. Rev. A 67, 063610 (2003)

    Article  Google Scholar 

  10. Bobrov, V.B., Trigger, S.A.: Bose–Einstein condensate wave function and nonlinear Schrödinger equation. Bull. Lebedev Phys. Inst. 43, 266 (2016)

    Article  Google Scholar 

  11. Galati, L., Zheng, S.: Nonlinear Schrödinger equations for Bose–Einstein condensates. AIP Conf. Proc. 1562, 50 (2013)

    Article  Google Scholar 

  12. Mithun, T., Kasamatsu, K.: Modulation instability associated nonlinear dynamics of spin-orbit coupled Bose–Einstein condensates. J. Phys. B Atom. Molec. Opt. Phys. 52, 045301 (2019)

    Article  Google Scholar 

  13. Stenflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010)

    Article  Google Scholar 

  14. Kolomeisky, E.B.: Nonlinear plasma waves in an electron gas. J. Phys. A Math. Theor. 51, 35LT02 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sulem, C., Sulem, P.P.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Applied Mathematics Sciences, vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  16. Yildirim, Y., Celik, N., Yasar, E.: Nonlinear Schrödinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: a novel extended Kudryashov’s algorithm and soliton solutions. Results Phys. 7, 3116 (2017)

    Article  Google Scholar 

  17. Castro, C., Mahecha, J.: On nonlinear quantum mechanics, Brownian motion, Weyl geometry and Fisher information. Prog. Phys. 1, 38 (2006)

    Google Scholar 

  18. Czachor, M.: Nonlinear Schrödinger equation and two-level atoms. Phys. Rev. A 53, 1310 (1996)

    Article  Google Scholar 

  19. Vladimirov, A.G., Gurevich, S.V., Tlidi, M.: Effect of Cherenkov radiation on localized-state interaction. Phys. Rev. A 97, 013816 (2018)

    Article  Google Scholar 

  20. Roelofs, G.H.M., Kersten, P.: Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings. J. Math. Phys. 33, 2185–2206 (1992)

    Article  MathSciNet  Google Scholar 

  21. Ohkuma, K., Ichikawa, Y.H., Abe, Y.: Soliton propagation along optical fibers. Opt. Lett. 12, 516–518 (1987)

    Article  Google Scholar 

  22. Al Qurashi, M.M., Yusuf, A., Aliyu, A.I., Inc, M.: Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Superlattices Microstruct. 105, 183 (2017)

    Article  Google Scholar 

  23. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95, 2855 (2019)

    Article  Google Scholar 

  24. Wang, Y.-Y., Dai, C.-Q., Zhou, G.-Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87, 67 (2017)

    Article  Google Scholar 

  25. Mihalache, D., Panoiu, N.C., Moldoveanu, F., Baboiu, D.-M.: The Riemann problem method for solving a perturbed nonlinear Schrodinger equation describing pulse propagation in optical fibres. J. Phys. A Math.Gen. 27, 6177–6189 (1994)

    Article  Google Scholar 

  26. Mihalache, D., Torner, L., Moldoveanu, F., Panoiu, N.C., Truta, N.: Inverse-scattering approach to femtosecond solitons in monomode optical fibers. Phys. Rev. E 48, 4699 (1993)

    Article  Google Scholar 

  27. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  28. Andreev, P.A.: First principles derivation of NLS equation for BEC with cubic and quintic nonlinearities at nonzero temperature: dispersion of linear waves. Int. J. Mod. Phys. B 27, 1350017 (2013)

    Article  MathSciNet  Google Scholar 

  29. Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791 (1991)

    Article  Google Scholar 

  30. Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449–452 (1991)

    Article  MathSciNet  Google Scholar 

  31. Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43, 6162 (1991)

    Article  Google Scholar 

  32. Trulsen, K., Dysthe, K.B.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–298 (1996)

    Article  MathSciNet  Google Scholar 

  33. Slunyaev, A.V.: A high-order nonlinear envelope equation for gravity waves in finite-depth water. J. Exp. Theor. Phys. 101, 926–941 (2005)

    Article  Google Scholar 

  34. Sedletskii, Y.V.: The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. J. Exp. Theor. Phys. 97, 180–193 (2003)

    Article  Google Scholar 

  35. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Sci. Rep. 528, 47–89 (2013)

    MathSciNet  Google Scholar 

  36. Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  37. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)

    Article  Google Scholar 

  38. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)

    Article  MathSciNet  Google Scholar 

  39. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  40. Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)

    Article  MathSciNet  Google Scholar 

  41. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    Article  MathSciNet  Google Scholar 

  42. Ankiewicz, A., Akhmediev, N.: Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Phys. Rev. E 96, 012219 (2017)

    Article  MathSciNet  Google Scholar 

  43. Bandelow, U., Ankiewicz, A., Amiranashvili, S., Akhmediev, N.: Sasa-Satsuma hierarchy of integrable evolution equations. Chaos 28, 053108 (2018)

    Article  MathSciNet  Google Scholar 

  44. Ankiewicz, A., Bandelow, U., Akhmediev, N.: Generalised Sasa–Satsuma equation: densities approach to new infinite hierarchy of integrable evolution equations, Zeitschrift für Naturforschung, section A. J. Phys. Sci. 73(12), 1121–1128 (2018)

    Google Scholar 

  45. Crabb, M., Akhmediev, N.: Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation. Phys. Rev. E 99, 052217 (2019)

    Article  Google Scholar 

  46. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    Article  MathSciNet  Google Scholar 

  47. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483 (1988)

    Article  Google Scholar 

  48. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    Article  MathSciNet  Google Scholar 

  49. Akhmediev, N.N., Mitzkevich, N.V.: Extremely high degree of \(N\)-soliton pulse compression in an optical fiber. IEEE J. Quantum Electron. 27, 849 (1991)

    Article  Google Scholar 

  50. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Article  Google Scholar 

  51. Chowdury, A., Krolikowski, W., Akhmediev, N.: Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits. Phys. Rev. E 96, 042209 (2017)

    Article  MathSciNet  Google Scholar 

  52. Ankiewicz, A., Chowdury, A.: Superposition of solitons with arbitrary parameters for higher-order equations. Z. Naturforsch. 71(7a), 647–656 (2016)

    Article  Google Scholar 

  53. Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62, 894 (1985)

    Google Scholar 

  54. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  Google Scholar 

  55. Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)

    Google Scholar 

  56. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Australian Research Council (Discovery Project DP150102057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Crabb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crabb, M., Akhmediev, N. Two-breather solutions for the class I infinitely extended nonlinear Schrödinger equation and their special cases. Nonlinear Dyn 98, 245–255 (2019). https://doi.org/10.1007/s11071-019-05186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05186-0

Keywords

Navigation