Log in

Fully distributed control for task-space formation tracking of nonlinear heterogeneous robotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies task-space formation tracking problem of nonlinear heterogeneous robotic systems involving external disturbances, kinematic and dynamic uncertainties, where the cases with both single and multiple time-varying leaders are considered. To solve the aforementioned nonlinear control problem, several novel fully distributed control algorithms, in which no global information is employed, are developed for the nonlinear systems under directed communication topologies. Based on the proposed control algorithms, the control process is classified into two parts, namely the task-space formation tracking of master robots with a single leader and that of slave robots with multiple leaders. By invoking Barbalat’s lemma and input-to-state stability theory, the sufficient criteria for the asymptotic convergence of the task-space formation tracking errors are established. In addition, the obtained results are extended to formation-containment and consensus problems in similar nonlinear cases. Finally, numerical examples are provided to illustrate the validity and advantages of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Meng, Z., Anderson, B.D.O., Hirche, S.: Formation control with mismatched compasses. Automatica 69, 232–241 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Meng, Z., Yang, T., Shi, G., Dimarogonas, D.V., Hong, Y., Johansson, K.H.: Targeted agreement of multiple Lagrangian systems. Automatica 84, 109–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59(9), 522–529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, L., Zeng, Z., Hu, J., Wang, X.: Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations. Neural Netw. 87, 122–131 (2017)

    Article  Google Scholar 

  5. Liu, Y., Guo, B., Park, J.H., Lee, S.M.: Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 118–128 (2018)

    Article  MathSciNet  Google Scholar 

  6. Liu, Y., Guo, B., Park, J.H., Lee, S.M.: Event-based reliable dissipative filtering for T–S fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2018)

    Article  Google Scholar 

  7. Liu, Y., Fang, F., Park, J.H.: Decentralized dissipative filtering for delayed nonlinear interconnected systems based on T–S fuzzy model. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2870079

    Google Scholar 

  8. Wang, Y., Liu, X., **ao, J., Shen, Y.: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 93, 26–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, M., Guan, Z., Hu, B., He, D., Liao, R.: Distributed controller–estimator for target tracking of networked robotic systems under sampled interaction. Automatica 69, 410–417 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yao, X., Ding, H., Ge, M.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dyn. 92(4), 1649–1664 (2018)

    Article  MATH  Google Scholar 

  11. Yao, X., Ding, H., Ge, M.: Formation-containment control for multi-robot systems with two-layer leaders via hierarchical controller–estimator algorithms. J. Frankl. Inst. 355(12), 5272–5290 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baranithaa, R., Rakkiyappana, R., Mohajerpoor, R., Al-Wais, S.: Stability analysis of nonlinear telerobotic systems with time-varying communication channel delays using general integral inequalities. Inf. Sci. 465, 353–372 (2018)

    Article  MathSciNet  Google Scholar 

  13. Al-Wais, S., Mohajerpoor, R., Shanmugam, L., Abdi, H., Nahavandi, S.: Improved delay-dependent stability criteria for telerobotic systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2706218

    MATH  Google Scholar 

  14. Mohajerpoor, R., Sharifi, I., Talebi, H.A., Rezaei, S.M.: Adaptive bilateral teleoperation of an unknown object handled by multiple robots under unknown communication delay. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1158-1163 (2013)

  15. Yu, X., Liu, L., Feng, G.: Distributed circular formation control of nonholonomic vehicles without direct distance measurements. IEEE Trans. Autom. Control 63(8), 2730–2737 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, J., Ji, J., Miao, Z., Zhou, J.: Adaptive formation control of networked Lagrangian systems with a moving leader. Nonlinear Dyn. 90(4), 2755–2766 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yuan, C., Licht, S., He, H.: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans. Cybern. 48(10), 2920–2934 (2017)

    Article  Google Scholar 

  18. Yuan, C., He, H., Wang, C.: Cooperative deterministic learning-based formation control for a group of nonlinear uncertain mechanical systems. IEEE Trans. Ind. Inf. (2018). https://doi.org/10.1109/TII.2018.2792455

    Google Scholar 

  19. Dong, X., Hu, G.: Time-varying formation tracking for linear multi-agent systems with multiple leaders. IEEE Trans. Autom. Control 62(7), 3658–3664 (2017)

    Article  MATH  Google Scholar 

  20. Yu, J., Dong, X., Li, Q., Ren, Z.: Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2817880

    MathSciNet  Google Scholar 

  21. Yu, J., Dong, X., Liang, Z., Li, Q., Ren, Z.: Practical time-varying formation tracking for high-order nonlinear multiagent systems with multiple leaders based on the distributed disturbance observer. Int. J. Robust. Nonlinear Control 28(9), 3258–3272 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Wen, G., Duan, Z., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 60(4), 1152–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, X., Li, Z., Gao, L.: Distributed adaptive tracking control for multi-agent systems with uncertain dynamics. Nonlinear Dyn. 90(4), 2729–2744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wen, G., Yu, W., Chen, M.Z.Q., Yu, X., Chen, G.: Pinning a complex network to follow a target system with predesigned control inputs. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–12 (2018)

    Google Scholar 

  25. Ding, Z.: Distributed adaptive consensus output regulation of network-connected heterogeneous unknown linear systems on directed graphs. IEEE Trans. Autom. Control 62(9), 4683–4690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z., Ding, Z., Sun, J., Li, Z.: Distributed adaptive convex optimization on directed graphs via continuous-time algorithms. IEEE Trans. Autom. Control 63(5), 1434–1441 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Yu, X., Huang, T., He, X.: Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2407–2418 (2018)

    Article  Google Scholar 

  28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  29. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  30. Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks. Springer, London (2011)

    Book  MATH  Google Scholar 

  31. Liu, Z., Guan, Z., Shen, X., Feng, G.: Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Trans. Autom. Control 57(10), 2639–2643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Yu, X., Guan, Z., Hu, B., Li, C.: Pulse-modulated intermittent control in consensus of multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 47(5), 783–793 (2017)

    Article  Google Scholar 

  33. Lozano, R., Brogliato, B., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control: Theory and Applications. Springer, London (2000)

    Book  MATH  Google Scholar 

  34. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 51675495 and 61703374 and the Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan), under Grants CUG150609 and CUG170656.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Feng Ding or Ming-Feng Ge.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix A. Proof of Lemma 1. By Assumption 2, it is clear that \(L_3\) is invertible. Based on the definition of Laplacian matrix \(\mathcal{L}\), one obtains \({L_2}{1_m} + {L_3}{1_{n - m}} = {0_m}\), i.e., \( - L_3^{ - 1}{L_2}{1_m} = {1_{n - m}}\) since \(L_3\) is invertible. Thus, it gives that \(-{L_3^{ - 1}{L_2}}\) is nonnegative, and each row sums equal to one.

Appendix B. Proof of Theorem 1. Here we prove the theorem by contradiction. First we replace \({\beta _i}\) in (11a) with a constant \({{{\bar{\beta }}}_i}\), which satisfies \({{\bar{\beta }}_i} > {\mathcal{L}_\infty }\left\| {{\dot{x}_0}} \right\| \). Then, by similar proofs of Theorem 3.1 given in [3] and Lemma 3 given in [10], one can easily obtain \(x_i - x_0 = 0\) in finite time. If we assume that \(x_i - x_0 = 0\) cannot be achieved in finite time such that it gives

$$\begin{aligned} {\beta _{i}(t)} < {{{\bar{\beta }}}_i}, \end{aligned}$$
(26)

While \({{{\dot{\beta }}}_i}\) in (11b) satisfies \({{{\dot{\beta }}}_i} \ge 0\), which reveals that \({\beta _{i}}\) continuously increases such that there must exist a finite time satisfying

$$\begin{aligned} {\beta _{i}(t_1)} > {{{\bar{\beta }}}_i}, \end{aligned}$$
(27)

By comparing with (26) and (27), it is contradictory such that it follows that \(x_i - x_0= 0\) can be obtained in finite time, and it ends the proof.

Appendix C1. The details derivative of \(V_{1i}(t)\). Differentiating (16) with respect to time yields

$$\begin{aligned} \dot{V}_{1i}(t)= & {} \frac{1}{2} s_i^T{{\dot{H}}_i}(q_i){{s}_i} + s_i^T{H_i}(q_i){{\dot{s}}_i} + {\tilde{\vartheta }}_{di}^T\Lambda _{di}^{-1}{{\dot{{\tilde{\vartheta }}}}_{di}} \\&+ {\tilde{\mu }}_{i}^T\Lambda _{\mu i}^{-1}{{\dot{{\tilde{\mu }}}}_{i}}, \end{aligned}$$

Then, by invoking (15), Properties 2 and 4, one obtains

$$\begin{aligned} \dot{V}_{1i}(t)= & {} \frac{1}{2}s_i^T{{\dot{H}}_i}({q_i}){s_i} + s_i^T\left( \phantom {\left. - {K_i}{s_i}- {Y_{di}}{{{\tilde{\vartheta }}}_{di}} + {{{\tilde{\mu }} }_i} \right) } - {C_i}\left( {{q_i},{{\dot{q}}_i}} \right) {s_i} \right. \\&\left. - {K_i}{s_i}- {Y_{di}}{{{\tilde{\vartheta }}}_{di}} + {{{\tilde{\mu }} }_i} \right) \\&+ \,{\tilde{\vartheta }} _{di}^T\Lambda _{di}^{ - 1}{\Lambda _{di}}Y_{di}^T{s_i} - {\tilde{\mu }} _i^T\Lambda _{\mu i}^{ - 1}{\Lambda _{\mu i}}{s_i}\\= & {} \frac{1}{2}s_i^T\left( {{{\dot{H}}_i}({q_i}) - 2{C_i}\left( {{q_i},{{\dot{q}}_i}} \right) } \right) {s_i} - s_i^T{K_i}{s_i} \\&- s_i^T{Y_{di}}{{\tilde{\vartheta }} _{di}} + s_i^T{{\tilde{\mu }} _i} + {\tilde{\vartheta }} _{di}^TY_{di}^T{s_i} - {\tilde{\mu }} _i^T{s_i}\\= & {} - s_i^T{K_{i}}{{s}_i} \le 0, \end{aligned}$$

Appendix C2. The details derivative of \(V_{2i}(t)\). Firstly, differentiating (17) with respect to time yields

$$\begin{aligned} {{\dot{V}}_{2i}}(t) = {{\tilde{x}}_i^T}{\dot{{\tilde{x}}}_i} + {\tilde{\vartheta }}_{ki}^T\Lambda _{ki}^{-1}{{\dot{{\tilde{\vartheta }}}}_{ki}} - \frac{1}{\alpha _1}({J_i s_i})^T{J_i}{s_i}, \end{aligned}$$

Then, substituting \({J_i}{s_i}={\dot{{\tilde{x}}}_i} + {\alpha _1}{{\tilde{x}}_i} - {Y_{ki}}{{{\tilde{\vartheta }}}_{ki}}\) derived from (13a), and \({{\dot{{\tilde{\vartheta }}}}_{ki}} = - {\Lambda _{ki}}Y_{ki}^T({\frac{1}{{\alpha _1}}{\dot{{\tilde{x}}}_i} + 2{{\tilde{x}}_i}})\) yields

$$\begin{aligned} {{\dot{V}}_{2i}}(t)= & {} -\frac{1}{{2{\alpha _1}}}\left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) ^T \left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) -\frac{\alpha _1}{2}{\tilde{x}}_i^T{{\tilde{x}}_i}\\&-\frac{1}{2{\alpha _1}}{\dot{{\tilde{x}}}_i^T}{\dot{{\tilde{x}}}_i}- \frac{1}{\alpha _1}(Y_{ki}{\tilde{\vartheta }}_{ki})^T{Y_{ki}}{{{\tilde{\vartheta }}}_{ki}}\\&-\frac{1}{{\alpha _1}}{\tilde{\vartheta }}_{ki}^T Y_{ki}^T{\dot{{\tilde{x}}}_i}, \end{aligned}$$

Based on the standard basic inequalities, one obtains \(-\frac{1}{{\alpha _1}}{\tilde{\vartheta }}_{ki}^T Y_{ki}^T{\dot{{\tilde{x}}}_i} \le \frac{1}{2{\alpha _1}}{\dot{{\tilde{x}}}_i^T}{\dot{{\tilde{x}}}_i} + \frac{1}{{2{\alpha _1}}}(Y_{ki}{\tilde{\vartheta }}_{ki})^T{Y_{ki}}{{{\tilde{\vartheta }}}_{ki}}\) such that

$$\begin{aligned} {{\dot{V}}_{2i}}(t)\le & {} -\frac{1}{{2{\alpha _1}}}\left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) ^T \left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) -\frac{{\alpha _1}}{2}{\tilde{x}}_i^T{{\tilde{x}}_i}\\&-\frac{1}{2{\alpha _1}}{\dot{{\tilde{x}}}_i^T}{\dot{{\tilde{x}}}_i} -\frac{1}{{{\alpha _1}}}(Y_{ki}{\tilde{\vartheta }}_{ki})^T{Y_{ki}}{{{\tilde{\vartheta }}}_{ki}}\\&+\frac{1}{2{\alpha _1}}{\dot{{\tilde{x}}}_i^T}{\dot{{\tilde{x}}}_i} + \frac{1}{{2{\alpha _1}}}(Y_{ki}{\tilde{\vartheta }}_{ki})^T{Y_{ki}}{{{\tilde{\vartheta }}}_{ki}}\\\le & {} -\frac{1}{{2{\alpha _1}}}\left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) ^T \left( {{\dot{{\tilde{x}}}_i} + {\alpha _1} {\tilde{x}}_i} \right) \\&-\frac{{\alpha _1}}{2}{\tilde{x}}_i^T{{\tilde{x}}_i}- \frac{1}{{2{\alpha _1}}}(Y_{ki}{\tilde{\vartheta }}_{ki})^T{Y_{ki}}{{{\tilde{\vartheta }}}_{ki}} \le 0, \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, XY., Ding, HF. & Ge, MF. Fully distributed control for task-space formation tracking of nonlinear heterogeneous robotic systems. Nonlinear Dyn 96, 87–105 (2019). https://doi.org/10.1007/s11071-019-04776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04776-2

Keywords

Navigation