Log in

Rich spatial–temporal dynamics in a diffusive population model for pioneer–climax species

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A general diffusive population model for interactions of pioneer and climax species subject to the no-flux boundary condition is considered. Local and global steady-state bifurcations as well as Hopf bifurcations are investigated. A condition for Turing instability not to happen is obtained, and the conditions for occurrences of Turing bifurcations and Hopf bifurcations are also obtained. Numerical simulations are carried out to demonstrate and extend the obtained analytic results which suggest that the spatial diffusion may make the climax species more dominant. The results indicate that the model, with spatial diffusion incorporated , can have very rich spatial–temporal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  2. Brown, S., Dockery, J., Pernarowski, M.: Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species. Math. Biosci. 194, 21–36 (2005)

    Article  MathSciNet  Google Scholar 

  3. Buchanan, J.R.: Asymptotic behavior of two interacting pioneer/climax species. Fields Inst. Commun. 21, 51–63 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Buchanan, J.R.: Turing instability in pioneer/climax species interactions. Math. Biosci. 194, 199–216 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations, Wiley Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    MATH  Google Scholar 

  6. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  Google Scholar 

  7. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  8. **, J., Shi, J., Wei, J., Yi, F.: Bifurcations of patterned solutions in the diffusive Lengyel–Epstein system of CIMA chemical reactions. Rocky Mt. J. Math. 43, 1637–1674 (2013)

    Article  MathSciNet  Google Scholar 

  9. Li, X., Jiang, W., Shi, J.: Hopf bifurcation and turing instability in the reaction–diffusion Holling–Tanner predator–prey model. IMA J. Appl. Math. 78, 287–300 (2013)

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Wei, J.: Bifurcation analysis of a diffusive model of pioneer and climax species interaction. Adv. Differ. Equ. 52, 1–11 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Mizoguchi, N., Ninomiya, H., Yanagida, E.: Diffusion-induced blowup in a nonlinear parabolic system. J. Dyn. Differ. Equ. 4, 619–638 (1998)

    Article  MathSciNet  Google Scholar 

  12. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum, New York (1992)

    MATH  Google Scholar 

  13. Peng, R., Shi, J., Wang, M.: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law. Nonlinearity 21, 1471–1488 (2008)

    Article  MathSciNet  Google Scholar 

  14. Peng, R., Yi, F., Zhao, X.: Spatiotemporal patterns in a reaction–diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ. 254, 2465–2498 (2013)

    Article  MathSciNet  Google Scholar 

  15. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  16. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Selgrade, J.F., Namkoong, G.: Stable periodic behavior in a pioneer-climax model. Nat. Resour. Model. 4, 215 (1990)

    Article  MathSciNet  Google Scholar 

  18. Selgrade, J.F., Roberds, J.H.: Lumped-density population models of pioneer-climax type and stability analysis of Hopf bifurcations. Math. Biosci. 135, 1–21 (1996)

    Article  MathSciNet  Google Scholar 

  19. Song, Y., Zou, X.: Bifurcation analysis of a diffusive ratio-dependent predator–prey model. Nonlinear Dyn. 78, 49–70 (2014)

    Article  MathSciNet  Google Scholar 

  20. Su, Y., Zou, X.: Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition. Nonlinearity 27, 87–104 (2014)

    Article  MathSciNet  Google Scholar 

  21. Sumner, S.: Competing species models for pioneer-climax forest dynamical systems. Proc. Dyn. Syst. 1, 351–358 (1994)

    MATH  Google Scholar 

  22. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  23. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  24. Wang, J., Wei, J., Shi, J.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems. J. Differ. Equ. 260, 3495–3523 (2016)

    Article  MathSciNet  Google Scholar 

  25. Weng, P., Zou, X.: Minimal wave speed and spread speed of competing pioneer and climax species. Appl. Anal. 93, 2093–2110 (2014)

    Article  MathSciNet  Google Scholar 

  26. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  Google Scholar 

  27. Yuan, Z., Zou, X.: Co-invasion waves in a reaction diffusion model for competing pioneer and climax species. Nonlinear Anal. RWA 11, 232–245 (2010)

    Article  MathSciNet  Google Scholar 

  28. Zhou, J., Shi, J.: Pattern formation in a general glycolysis reaction difusion system IMA. J. Appl. Math. 80, 1703–1738 (2015)

    MATH  Google Scholar 

  29. Zuo, W., Wei, J.: Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model. Dyn. Partial Differ. Equ. 8, 363–384 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ngfu Zou.

Additional information

Research supported by the Natural Science and Engineering Council of Canada (Grant No. RGPIN-2016-04665), National Natural Science Foundation of China (No: 11201096, 11461024) and the Fundamental Research Funds for the Central Universities and Program for Innovation Research of Science in Harbin Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zou, X. Rich spatial–temporal dynamics in a diffusive population model for pioneer–climax species. Nonlinear Dyn 95, 1731–1745 (2019). https://doi.org/10.1007/s11071-018-4656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4656-5

Keywords

Mathematics Subject Classification

Navigation