Log in

Contrasting Iron Metabolism in Undifferentiated Versus Differentiated MO3.13 Oligodendrocytes via IL-1β-Induced Iron Regulatory Protein 1

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of iron in the substantia nigra. While iron accumulation and inflammation are implicated in PD pathogenesis, their impact on oligodendrocytes, the brain’s myelin-forming cells, remains elusive. This study investigated the influence of interleukin-1β (IL-1β), an elevated proinflammatory cytokine in PD, on iron-related proteins in MO3.13 oligodendrocytes. We found that IL-1β treatment in undifferentiated MO3.13 oligodendrocytes increased iron regulatory protein 1 and transferrin receptor 1 (TfR1) expression while decreasing ferroportin 1 (FPN1) expression. Consequently, iron uptake was enhanced, and iron release was reduced, leading to intracellular iron accumulation. Conversely, IL-1β treatment in differentiated MO3.13 oligodendrocytes exhibited the opposite effect, with decreased TfR1 expression, increased FPN1 expression, and reduced iron uptake. These findings suggest that IL-1β-induced dysregulation of iron metabolism in oligodendrocytes may contribute to the pathological processes observed in PD. IL-1β can increase the iron content in undifferentiated oligodendrocytes, thus facilitating the differentiation of undifferentiated MO3.13 oligodendrocytes. In differentiated oligodendrocytes, IL-1β may facilitate iron release, providing a potential source of iron for neighboring dopaminergic neurons, thereby initiating a cascade of deleterious events. This study provides valuable insights into the intricate interplay between inflammation, abnormal iron accumulation, and oligodendrocyte dysfunction in PD. Targeting the IL-1β-mediated alterations in iron metabolism may hold therapeutic potential for mitigating neurodegeneration and preserving dopaminergic function in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data analyzed in this study are included within the article.

References

  1. Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s Disease. Lancet Neurol 20:385–397. https://doi.org/10.1016/S1474-4422(21)00030-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weintraub D, Aarsland D, Chaudhuri KR et al (2022) The neuropsychiatry of Parkinson’s Disease: advances and challenges. Lancet Neurol 21:89–102. https://doi.org/10.1016/S1474-4422(21)00330-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  PubMed  Google Scholar 

  4. Auguste YSS, Ferro A, Kahng JA et al (2022) Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat Neurosci 25:1273–1278. https://doi.org/10.1038/s41593-022-01170-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azevedo C, Teku G, Pomeshchik Y et al (2022) Parkinson’s disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci USA 119:e2111405119. https://doi.org/10.1073/pnas.2111405119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chamberlain KA, Huang N, **e Y et al (2021) Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109:3456-3472e8. https://doi.org/10.1016/j.neuron.2021.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheli VT, Correale J, Paez PM, Pasquini JM (2020) Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro 12:1759091420962681. https://doi.org/10.1177/1759091420962681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Annese V, Barcia C, Ros-Bernal F et al (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x

    Article  CAS  PubMed  Google Scholar 

  9. Bryois J, Skene NG, Hansen TF et al (2020) Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat Genet 52:482–493. https://doi.org/10.1038/s41588-020-0610-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang GS, Eriksson LC, **a L et al (1999) Dietary iron overload inhibits carbon tetrachloride-induced promotion in chemical hepatocarcinogenesis: effects on cell proliferation, apoptosis, and antioxidation. J Hepatol 30:689–698. https://doi.org/10.1016/s0168-8278(99)80201-3

    Article  CAS  PubMed  Google Scholar 

  11. Masaldan S, Bush AI, Devos D et al (2019) Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  12. Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74:199–205. https://doi.org/10.1007/BF01244786

    Article  CAS  PubMed  Google Scholar 

  13. Reimão S, Ferreira S, Nunes RG et al (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s Disease. Eur J Neurol 23:368–374. https://doi.org/10.1111/ene.12838

    Article  PubMed  Google Scholar 

  14. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810. https://doi.org/10.1074/jbc.M008922200

    Article  CAS  PubMed  Google Scholar 

  15. Wang S-M, Fu L-J, Duan X-L et al (2010) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133. https://doi.org/10.1007/s00018-009-0167-3

    Article  CAS  PubMed  Google Scholar 

  16. Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1:155–157. https://doi.org/10.1016/j.cmet.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. https://doi.org/10.1126/science.1104742

    Article  CAS  PubMed  Google Scholar 

  18. Anderson SA, Nizzi CP, Chang Y-I et al (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab 17:282–290. https://doi.org/10.1016/j.cmet.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306:2087–2090. https://doi.org/10.1126/science.1103786

    Article  CAS  PubMed  Google Scholar 

  20. Dev S, Kumari S, Singh N et al (2015) Role of extracellular hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: implication in iron accumulation. Free Radic Biol Med 86:78–89. https://doi.org/10.1016/j.freeradbiomed.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  21. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell 142:24–38. https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  22. Cheli VT, Santiago González DA, Wan Q et al (2021) H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia 69:2981–2998. https://doi.org/10.1002/glia.24083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiou B, Neely EB, Mcdevitt DS et al (2020) Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 152:381–396. https://doi.org/10.1111/jnc.14834

    Article  CAS  PubMed  Google Scholar 

  24. You Y, Muraoka S, Jedrychowski MP et al (2022) Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J Extracell Vesicles 11:e12183. https://doi.org/10.1002/jev2.12183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun M-F, Zhu Y-L, Zhou Z-L et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 70:48–60. https://doi.org/10.1016/j.bbi.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  26. Liu T-W, Chen C-M, Chang K-H (2022) Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci 23:4148. https://doi.org/10.3390/ijms23084148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bottigliengo D, Foco L, Seibler P et al (2022) A mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 145:3444–3453. https://doi.org/10.1093/brain/awac193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sterling JK, Kam T-I, Guttha S et al (2022) Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 38:110358. https://doi.org/10.1016/j.celrep.2022.110358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miao W, Zhao Y, Huang Y et al (2020) IL-13 ameliorates neuroinflammation and promotes functional recovery after traumatic brain injury. J Immunol 204:1486–1498. https://doi.org/10.4049/jimmunol.1900909

    Article  CAS  PubMed  Google Scholar 

  30. McNamara NB, Munro DAD, Bestard-Cuche N et al (2023) Microglia regulate central nervous system myelin growth and integrity. Nature 613:120–129. https://doi.org/10.1038/s41586-022-05534-y

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Lan X, Han X et al (2021) Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav Immun 94:437–457. https://doi.org/10.1016/j.bbi.2021.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Bajbouj K, Shafarin J, Muhammad JS et al (2020) Estrogen signaling differentially alters iron metabolism in monocytes in an interleukin 6-dependent manner. Immunobiology 225:151995. https://doi.org/10.1016/j.imbio.2020.151995

    Article  CAS  PubMed  Google Scholar 

  33. Zhou S, Du X, **e J, Wang J (2017) Interleukin-6 regulates iron-related proteins through c-Jun N-terminal kinase activation in BV2 microglial cell lines. PLoS One 12:e0180464. https://doi.org/10.1371/journal.pone.0180464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Song N, Jiang H et al (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832:618–625. https://doi.org/10.1016/j.bbadis.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  35. Filipovic R, Zecevic N (2005) Lipopolysaccharide affects golli expression and promotes proliferation of oligodendrocyte progenitors. Glia 49:457–466. https://doi.org/10.1002/glia.20125

    Article  PubMed  Google Scholar 

  36. Kroner A, Greenhalgh AD, Zarruk JG et al (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116. https://doi.org/10.1016/j.neuron.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  37. Cheng J, Liao Y, Dong Y et al (2020) Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 16:2193–2205. https://doi.org/10.1080/15548627.2020.1719723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leal MC, Casabona JC, Puntel M, Pitossi FJ (2013) Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci 7:53. https://doi.org/10.3389/fncel.2013.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colonna M, Brioschi S (2020) Neuroinflammation and neurodegeneration in human brain at single-cell resolution. Nat Rev Immunol 20:81–82. https://doi.org/10.1038/s41577-019-0262-0

    Article  CAS  PubMed  Google Scholar 

  40. Peferoen L, Kipp M, van der Valk P et al (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141:302–313. https://doi.org/10.1111/imm.12163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee NJ, Ha S-K, Sati P et al (2019) Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Invest 129:4365–4376. https://doi.org/10.1172/JCI126809

    Article  PubMed  PubMed Central  Google Scholar 

  42. Camargo N, Goudriaan A, van Deijk A-LF et al (2017) Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol 15:e1002605. https://doi.org/10.1371/journal.pbio.1002605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25. https://doi.org/10.1016/j.expneurol.2007.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nemeth E, Ganz T (2023) Hepcidin and iron in health and disease. Annu Rev Med 74:261–277. https://doi.org/10.1146/annurev-med-043021-032816

    Article  CAS  PubMed  Google Scholar 

  45. Rouault TA, Tong W-H (2005) Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351. https://doi.org/10.1038/nrm1620

    Article  CAS  PubMed  Google Scholar 

  46. Lepka K, Volbracht K, Bill E et al (2017) Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 65:1521–1534. https://doi.org/10.1002/glia.23178

    Article  PubMed  Google Scholar 

  47. Kühn LC (2015) Iron regulatory proteins and their role in controlling iron metabolism. Metallomics 7:232–243. https://doi.org/10.1039/c4mt00164h

    Article  PubMed  Google Scholar 

  48. Huynh N, Ou Q, Cox P et al (2019) Glycogen branching enzyme controls cellular iron homeostasis via iron regulatory protein 1 and mitoNEET. Nat Commun 10:5463. https://doi.org/10.1038/s41467-019-13237-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao F, Cui X, Zhang Y et al (2021) Iron regulatory protein 1 promotes ferroptosis by sustaining cellular iron homeostasis in melanoma. Oncol Lett 22:657. https://doi.org/10.3892/ol.2021.12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (31571054), Shandong Provincial Key Research and Development Project (2019GSF108224), Natural Science Foundation of Shandong Province (ZR2021MC116).

Funding

This study was funded by the Natural Science Foundation of Shandong Province (ZR2021MC116), National Natural Science Foundation of China (31571054), Shandong Provincial Key Research and Development Project (2019GSF108224).

Author information

Authors and Affiliations

Authors

Contributions

JW and JX: designed the study and revised the manuscript. JY: wrote the manuscript. CD and YL: performed experiments and analyzed the data. RL and CJ: assisted with experimental techniques, analyzed the data.

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Du, C., Li, Y. et al. Contrasting Iron Metabolism in Undifferentiated Versus Differentiated MO3.13 Oligodendrocytes via IL-1β-Induced Iron Regulatory Protein 1. Neurochem Res 49, 466–476 (2024). https://doi.org/10.1007/s11064-023-04047-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04047-y

Keywords

Navigation