Log in

Neuropeptides Modulate Feeding via the Dopamine Reward Pathway

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 24 June 2023

This article has been updated

Abstract

Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, slee** and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This article is a review. So, the authors do not have experimental data.

Change history

Abbreviations

2-AG:

2-Arachidonoylglycerol

α-MSH:

Alpha-melanocyte-stimulating hormone

AG:

Acylated ghrelin

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid

AgRP:

Agoutin-related protein

ARC:

Arcuate nucleus

cAMP:

Cyclic adenosine monophosphate

CB 1:

Cannabinoid 1

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

D2-ENK:

D2-enkephalin neurons

DA:

Dopamine

DRN:

Dorsal raphe nucleus

EPSCs:

Excitatory postsynaptic currents

ERK1/2:

Extracellular signal-regulated kinase

ESR1:

Oestrogen receptors

EX4:

Exendin-4

GABA:

Gamma-aminobutyric acid

GIRK:

G protein-gated inwardly rectifying potassium

GLP-1:

Glucagon-like peptide-1

GLUT2:

Glucose transporter 2

HIP:

Hippocampus

ICV:

Intracerebroventricularly

LDTg:

Laterodorsal tegmental area

LHA:

Lateral hypothalamus

MAPK:

Mitogen-activated protein kinase

MC:

Melanocortin

MCH:

Melanin-concentrating hormone

MSNs:

Medium spiny projection neurons

NAc:

Nucleus accumbens

NAcc:

Nucleus accumbens core

NAcLat:

Nucleus accumbens lateral shell

NAcMed:

Nucleus accumbens medial shell

NAcsh:

Nucleus accumbens shell

NMDA:

N-methyl-D-aspartate

NPY:

Neuropeptide Y

Nts:

Neurotensin

NTS:

Nucleus tractus solitarius

PFC:

Prefrontal cortex

PKA:

Protein kinase A

PKC:

Protein kinase C

POMC:

Pro-opiomelanocortin

PPG:

Pre-glutathione

PR:

Progression ratio

PVN:

Hypothalamic paraventricular nucleus

PVT:

Paraventricular thalamus

SN:

Substantia nigra

SON:

Supraoptic nucleus

TH:

Tyrosine hydroxylase

UAG:

Unacylated ghrelin

VM:

Ventral mesencephalon

VP:

Ventral pallidum

VTA:

Ventral tegmental area

References

  1. Fulton S (2010) Appetite and reward. Front Neuroendocrinol 31(1):85–103. https://doi.org/10.1016/j.yfrne.2009.10.003

    Article  PubMed  Google Scholar 

  2. Chen Z, Chen G, Zhong J, Jiang S, Lai S, Xu H, Deng X, Li F, Lu S, Zhou K, Li C, Liu Z, Zhang X, Zhu Y (2022) A circuit from lateral septum neurotensin neurons to tuberal nucleus controls hedonic feeding. Mol Psychiatry 27(12):4843–4860. https://doi.org/10.1038/s41380-022-01742-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671. https://doi.org/10.1038/35007534

    Article  CAS  PubMed  Google Scholar 

  4. Naef L, Pitman KA, Borgland SL (2015) Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr 20(6):574–583. https://doi.org/10.1017/S1092852915000693

    Article  PubMed  Google Scholar 

  5. Benton D, Young HA (2016) A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int J Obes (Lond) 40(Suppl 1):S12-21. https://doi.org/10.1038/ijo.2016.9

    Article  CAS  PubMed  Google Scholar 

  6. Luo SX, Huang EJ (2016) Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am J Pathol 186(3):478–488. https://doi.org/10.1016/j.ajpath.2015.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chung AS, Miller SM, Sun Y, Xu X, Zweifel LS (2017) Sexual congruency in the connectome and translatome of VTA dopamine neurons. Sci Rep 7(1):11120. https://doi.org/10.1038/s41598-017-11478-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485. https://doi.org/10.1016/j.neuron.2012.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harley CW (2004) Norepinephrine and dopamine as learning signals. Neural Plast 11:360813. https://doi.org/10.1155/NP.2004.191

    Article  Google Scholar 

  10. Fallon JH (1988) Topographic organization of ascending dopaminergic projectionsa. Ann N Y Acad Sci 537(1):1–9. https://doi.org/10.1111/j.1749-6632.1988.tb42093.x

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez-Castellanos J, Graybiel AM (1987) Subdivisions of the dopamine-containing A8–A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience 23(1):223–242. https://doi.org/10.1016/0306-4522(87)90285-5

    Article  CAS  PubMed  Google Scholar 

  12. Massaly N, Copits BA, Wilson-Poe AR, Hipolito L, Markovic T, Yoon HJ, Liu S, Walicki MC, Bhatti DL, Sirohi S, Klaas A, Walker BM, Neve R, Cahill CM, Shoghi KI, Gereau RWt, McCall JG, Al-Hasani R, Bruchas MR, & Moron JA, (2019) Pain-Induced negative affect is mediated via recruitment of the nucleus accumbens kappa opioid system. Neuron 102(3):564–573. https://doi.org/10.1016/j.neuron.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cahill CM, Taylor AM, Cook C, Ong E, Moron JA, Evans CJ (2014) Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 5:253. https://doi.org/10.3389/fphar.2014.00253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347(6288):72–76. https://doi.org/10.1038/347072a0

    Article  CAS  PubMed  Google Scholar 

  15. Fremeau RT, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci USA 88(9):3772–3776. https://doi.org/10.1073/pnas.88.9.3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355(3):418–426. https://doi.org/10.1002/cne.903550308

    Article  PubMed  Google Scholar 

  17. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217. https://doi.org/10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  18. Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152. https://doi.org/10.3389/fncir.2013.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494. https://doi.org/10.1038/nrn1406

    Article  CAS  PubMed  Google Scholar 

  20. Corkrum M, Araque A (2021) Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 46(11):1864–1872. https://doi.org/10.1038/s41386-021-01090-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beier KT, Steinberg EE, DeLoach KE, **. Cell 162(3):622–634. https://doi.org/10.1016/j.cell.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poulin J-F, Caronia G, Hofer C, Cui Q, Helm B, Ramakrishnan C, Chan CS, Dombeck DA, Deisseroth K, Awatramani R (2018) Map** projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci 21(9):1260–1271. https://doi.org/10.1038/s41593-018-0203-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poulin J-F, Zou J, Drouin-Ouellet J, Kim KYA, Cicchetti F, Awatramani RB (2014) Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. https://doi.org/10.1016/j.celrep.2014.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anderegg A, Poulin J-F, Awatramani R (2015) Molecular heterogeneity of midbrain dopaminergic neurons – Moving toward single cell resolution. J FEBS Lett 589:3714–3726. https://doi.org/10.1016/j.febslet.2015.10.022

    Article  CAS  Google Scholar 

  25. Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, Fuller PM, Leinninger GM (2017) Neurotensin receptor-1 identifies a subset of ventral tegmental dopamine neurons that coordinates energy balance. Cell Rep 20(8):1881–1892. https://doi.org/10.1016/j.celrep.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perez-Bonilla P, Santiago-Colon K, Leinninger GM (2020) Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 223:112986. https://doi.org/10.1016/j.physbeh.2020.112986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morales M, Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18(2):73–85. https://doi.org/10.1038/nrn.2016.165

    Article  CAS  PubMed  Google Scholar 

  28. Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12(10):3596–3604. https://doi.org/10.1046/j.1460-9568.2000.00250.x

    Article  CAS  PubMed  Google Scholar 

  29. Carlson JD, Selden NR, Heinricher MM (2005) Nocifensive reflex-related on- and off-cells in the pedunculopontine tegmental nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus. Brain Res 1063(2):187–194. https://doi.org/10.1016/j.brainres.2005.09.036

    Article  CAS  PubMed  Google Scholar 

  30. Waung MW, Margolis EB, Charbit AR, Fields HL (2019) A Midbrain circuit that mediates headache aversiveness in rats. Cell Rep 28(11):2739–2747. https://doi.org/10.1016/j.celrep.2019.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohta Y, Murakami TE, Kawahara M, Haruta M, Takehara H, Tashiro H, Sasagawa K, Ohta J, Akay M, Akay YM (2022) Investigating the influence of GABA neurons on dopamine neurons in the ventral tegmental area using optogenetic techniques. Int J Mol Sci. https://doi.org/10.3390/ijms23031114

    Article  PubMed  PubMed Central  Google Scholar 

  32. Al-Hasani R, Gowrishankar R, Schmitz GP, Pedersen CE, Marcus DJ, Shirley SE, Hobbs TE, Elerding AJ, Renaud SJ, **g M, Li Y, Alvarez VA, Lemos JC, Bruchas MR (2021) Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat Neurosci 24(10):1414–1428. https://doi.org/10.1038/s41593-021-00898-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang HL, Qi J, Zhang S, Wang H, Morales M (2015) Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons. J Neurosci 35(48):15948–15954. https://doi.org/10.1523/JNEUROSCI.3428-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi J, Zhang S, Wang HL, Barker DJ, Miranda-Barrientos J, Morales M (2016) VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci 19(5):725–733. https://doi.org/10.1038/nn.4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McGovern DJ, Polter AM, Root DH (2021) Neurochemical Signaling of Reward and Aversion to Ventral Tegmental Area Glutamate Neurons. J Neurosci 41(25):5471–5486. https://doi.org/10.1523/JNEUROSCI.1419-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C, Palmiter RD, Soden ME, Zweifel LS (2020) Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron 105(5):909–920. https://doi.org/10.1016/j.neuron.2019.11.024

    Article  CAS  PubMed  Google Scholar 

  37. Richter A, Reinhard F, Kraemer B, Gruber O (2020) A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing. Eur Neuropsychopharmacol 36:137–150. https://doi.org/10.1016/j.euroneuro.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  38. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41(1):89–125. https://doi.org/10.1016/0306-4522(91)90202-Y

    Article  CAS  PubMed  Google Scholar 

  39. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776. https://doi.org/10.1016/j.neubiorev.2003.11.015

    Article  PubMed  Google Scholar 

  40. Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25(50):11777–11786. https://doi.org/10.1523/JNEUROSCI.2329-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bond CW, Trinko R, Foscue E, Furman K, Groman SM, Taylor JR, DiLeone RJ (2020) Medial nucleus accumbens projections to the ventral tegmental area control food consumption. J Neurosci 40(24):4727–4738. https://doi.org/10.1523/JNEUROSCI.3054-18.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maldonado-Irizarry CS, Kelley AE (1994) Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology 116(1):65–72. https://doi.org/10.1007/bf02244872

    Article  CAS  PubMed  Google Scholar 

  43. Bin Saifullah MA, Nagai T, Kuroda K, Wulaer B, Nabeshima T, Kaibuchi K, Yamada K (2018) Cell type-specific activation of mitogen-activated protein kinase in D1 receptor-expressing neurons of the nucleus accumbens potentiates stimulus-reward learning in mice. Sci Rep 8(1):14413. https://doi.org/10.1038/s41598-018-32840-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907. https://doi.org/10.1016/j.neuron.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  45. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390. https://doi.org/10.1126/science.1188472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15(6):816–818. https://doi.org/10.1038/nn.3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai L-H, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15(9):1281–1289. https://doi.org/10.1038/nn.3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E, Gaspar R, Sotiropoulos I, Sousa N, Rodrigues AJ (2020) Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol Psychiatry 25(12):3241–3255. https://doi.org/10.1038/s41380-019-0484-3

    Article  CAS  PubMed  Google Scholar 

  49. Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P, Sousa N, Rodrigues AJ (2016) Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun 7:11829. https://doi.org/10.1038/ncomms11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S (2018) Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97(2):434–449. https://doi.org/10.1016/j.neuron.2017.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. **a Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO (2011) Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 31(21):7811–7816. https://doi.org/10.1523/JNEUROSCI.1504-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soares-Cunha C, Coimbra B, Domingues AV, Vasconcelos N, Sousa N, Rodrigues AJ (2018) Nucleus accumbens microcircuit underlying D2-MSN-driven increase in motivation. eNeuro. https://doi.org/10.1523/ENEURO.0386-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu Z, Le Q, Lv Y, Chen X, Cui J, Zhou Y, Cheng D, Ma C, Su X, **ao L, Yang R, Zhang J, Ma L, Liu X (2022) A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res 32(2):139–156. https://doi.org/10.1038/s41422-021-00588-5

    Article  CAS  PubMed  Google Scholar 

  54. Yao Y, Gao G, Liu K, Shi X, Cheng M, **ong Y, Song S (2021) Projections from D2 neurons in different subregions of nucleus accumbens shell to ventral pallidum play distinct roles in reward and aversion. Neurosci Bull 37(5):623–640. https://doi.org/10.1007/s12264-021-00632-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miura M, Masuda M, Aosaki T (2008) Roles of micro-opioid receptors in GABAergic synaptic transmission in the striosome and matrix compartments of the striatum. Mol Neurobiol 37(2–3):104–115. https://doi.org/10.1007/s12035-008-8023-2

    Article  CAS  PubMed  Google Scholar 

  56. Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53(4):590–605. https://doi.org/10.1002/neu.10150

    Article  CAS  PubMed  Google Scholar 

  57. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14(6):685–692. https://doi.org/10.1016/j.conb.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  58. Ferrario CR, Labouèbe G, Liu S, Nieh EH, Routh VH, Xu S, O’Connor EC (2016) Homeostasis meets motivation in the battle to control food intake. J Neurosci 36(45):11469–11481. https://doi.org/10.1523/jneurosci.2338-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76(1):98–115. https://doi.org/10.1016/j.neuron.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parker JA, Bloom SR (2012) Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 63(1):18–30. https://doi.org/10.1016/j.neuropharm.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  61. Kurt G, Woodworth HL, & Leinninger GM (2017) Lateral hypothalamic control of energy balance, Colloquium Series on Integrated Systems Physiology: From Molecule to Function

  62. Woodward ORM, Gribble FM, Reimann F, Lewis JE (2022) Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 600(5):1053–1078. https://doi.org/10.1113/JP280581

    Article  CAS  PubMed  Google Scholar 

  63. Macneil DJ (2013) The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol (Lausanne) 4:49. https://doi.org/10.3389/fendo.2013.00049

    Article  CAS  PubMed  Google Scholar 

  64. Ploj K, Benthem L, Kakol-Palm D, Gennemark P, Andersson L, Bjursell M, Borjesson J, Karrberg L, Mansson M, Antonsson M, Johansson A, Iverson S, Carlsson B, Turnbull A, Linden D (2016) Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br J Pharmacol 173(18):2739–2751. https://doi.org/10.1111/bph.13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chung S, Parks GS, Lee C, Civelli O (2011) Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 43(1):115–121. https://doi.org/10.1007/s12031-010-9411-4

    Article  CAS  PubMed  Google Scholar 

  66. Chee MJ, Pissios P, Maratos-Flier E (2013) Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp Neurol 521(10):2208–2234. https://doi.org/10.1002/cne.23273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 25(11):2933–2940. https://doi.org/10.1523/JNEUROSCI.1714-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435(1):26–40. https://doi.org/10.1002/cne.1191

    Article  CAS  PubMed  Google Scholar 

  69. Spencer CDP (2022) Distribution and Activation of Melanin-Concentrating Hormone Receptor-1 at Dopaminergic, GABAergic, and Glutamatergic Neurons in the Ventral Tegmental Area. (Thesis (M.Sc.) - Carleton University, 2022, Ottawa)

  70. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong S-S, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LHT, Howard AD, Liu Q (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA 98(13):7564–7569. https://doi.org/10.1073/pnas.121170598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 276(23):20125–20129. https://doi.org/10.1074/jbc.M102068200

    Article  CAS  PubMed  Google Scholar 

  72. Liu S, Borgland SL (2015) Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 289:19–42. https://doi.org/10.1016/j.neuroscience.2014.12.046

    Article  CAS  PubMed  Google Scholar 

  73. Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, Ates T, Oncul M, Coban I, Ates Oz E, Cebecioglu U, Alp MI, Yilmaz B, Atasoy D (2020) MCH neuron activity is sufficient for reward and reinforces feeding. Neuroendocrinology 110(3–4):258–270. https://doi.org/10.1159/000501234

    Article  CAS  PubMed  Google Scholar 

  74. Dore R, Krotenko R, Reising JP, Murru L, Sundaram SM, Di Spiezio A, Muller-Fielitz H, Schwaninger M, Johren O, Mittag J, Passafaro M, Shanabrough M, Horvath TL, Schulz C, Lehnert H (2020) Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 45(10):1645–1655. https://doi.org/10.1038/s41386-020-0682-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kissileff HR, Herzog M (2018) Progressive ratio (PR) schedules and the sipometer: do they measure wanting, liking, and/or reward? A tribute to Anthony Sclafani and Karen Ackroff. Appetite 122:44–50. https://doi.org/10.1016/j.appet.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  76. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM (2013) Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife. https://doi.org/10.7554/eLife.01462

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM (2018) Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 13:83–89. https://doi.org/10.1016/j.molmet.2018.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci 30(24):8263–8273. https://doi.org/10.1523/JNEUROSCI.5858-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee J, Raycraft L, Johnson AW (2021) The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 229:113234. https://doi.org/10.1016/j.physbeh.2020.113234

    Article  CAS  PubMed  Google Scholar 

  80. Xu L, Lin W, Zheng Y, Chen J, Fang Z, Tan N, Hu W, Guo Y, Wang Y, Chen Z (2022) An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr Biol 32(9):1937-1948.e1935. https://doi.org/10.1016/j.cub.2022.03.010

    Article  CAS  PubMed  Google Scholar 

  81. Thoeni S, Loureiro M, O’Connor EC, Luscher C (2020) Depression of accumbal to lateral hypothalamic synapses gates overeating. Neuron 107(1):158–172. https://doi.org/10.1016/j.neuron.2020.03.029

    Article  CAS  PubMed  Google Scholar 

  82. O’Connor EC, Kremer Y, Lefort S, Harada M, Pascoli V, Rohner C, Luscher C (2015) Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88(3):553–564. https://doi.org/10.1016/j.neuron.2015.09.038

    Article  CAS  PubMed  Google Scholar 

  83. Durst M, Konczol K, Balazsa T, Eyre MD, Toth ZE (2019) Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes (Lond) 43(4):917–927. https://doi.org/10.1038/s41366-018-0133-y

    Article  CAS  PubMed  Google Scholar 

  84. Rossi MA, Stuber GD (2018) Overlap** brain circuits for homeostatic and hedonic feeding. Cell Metab 27(1):42–56. https://doi.org/10.1016/j.cmet.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  85. Stuber GD, Wise RA (2016) Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 19(2):198–205. https://doi.org/10.1038/nn.4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE (2020) Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 178:108270. https://doi.org/10.1016/j.neuropharm.2020.108270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Conductier G, Nahon JL, Guyon A (2011) Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on alpha2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience 178:89–100. https://doi.org/10.1016/j.neuroscience.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  88. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585. https://doi.org/10.1016/S0092-8674(00)80949-6

    Article  CAS  PubMed  Google Scholar 

  89. Sakurai T, Moriguchi T, Furuya K, Kajiwara N, Nakamura T, Yanagisawa M, Goto K (1999) Structure and function of human prepro-orexin gene. J Biol Chem 274(25):17771–17776. https://doi.org/10.1074/jbc.274.25.17771

    Article  CAS  PubMed  Google Scholar 

  90. Jacobson LH, Hoyer D, de Lecea L (2022) Hypocretins (orexins): the ultimate translational neuropeptides. J Intern Med 291(5):533–556. https://doi.org/10.1111/joim.13406

    Article  CAS  PubMed  Google Scholar 

  91. Baimel C, Borgland SL (2015) Orexin signaling in the VTA gates morphine-induced synaptic plasticity. J Neurosci 35(18):7295–7303. https://doi.org/10.1523/jneurosci.4385-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Katzman MA, Katzman MP (2022) Neurobiology of the orexin system and its potential role in the regulation of hedonic tone. Brain Sci. https://doi.org/10.3390/brainsci12020150

    Article  PubMed  PubMed Central  Google Scholar 

  93. Couvineau A, Voisin T, Nicole P, Gratio V, Blais A (2021) Orexins: a promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol 27(44):7582–7596. https://doi.org/10.3748/wjg.v27.i44.7582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cutler DJ, Morris R, Sheridhar V, Wattam TAK, Holmes S, Patel S, Arch JRS, Wilson S, Buckingham RE, Evans ML, Leslie RA, Williams G (1999) Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord☆. Peptides 20(12):1455–1470. https://doi.org/10.1016/S0196-9781(99)00157-6

    Article  CAS  PubMed  Google Scholar 

  95. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LHT, Guan X-M (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438(1–2):71–75. https://doi.org/10.1016/S0014-5793(98)01266-6

    Article  CAS  PubMed  Google Scholar 

  96. Alexander S, Benson H, Faccenda E, Pawson A, Sharman J, Spedding M, Peters J, Harmar A (2013) The concise guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol. https://doi.org/10.1111/bph.12444/full

    Article  PubMed  PubMed Central  Google Scholar 

  97. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26(2):398–405. https://doi.org/10.1523/JNEUROSCI.2761-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arrigoni E, Chee MJS, Fuller PM (2019) To eat or to sleep: that is a lateral hypothalamic question. Neuropharmacology 154:34–49. https://doi.org/10.1016/j.neuropharm.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  99. Prince CD, Rau AR, Yorgason JT, Espana RA (2015) Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci 6(1):138–146. https://doi.org/10.1021/cn500246j

    Article  CAS  PubMed  Google Scholar 

  100. Thomas CS, Mohammadkhani A, Rana M, Qiao M, Baimel C, Borgland SL (2022) Optogenetic stimulation of lateral hypothalamic orexin/dynorphin inputs in the ventral tegmental area potentiates mesolimbic dopamine neurotransmission and promotes reward-seeking behaviours. Neuropsychopharmacology 47(3):728–740. https://doi.org/10.1038/s41386-021-01196-y

    Article  CAS  PubMed  Google Scholar 

  101. Thompson JL, Borgland SL (2011) A role for hypocretin/orexin in motivation. Behav Brain Res 217(2):446–453. https://doi.org/10.1016/j.bbr.2010.09.028

    Article  CAS  PubMed  Google Scholar 

  102. Liu X, Gao S, Zhang N, ** T, Sun X, Luan X, Xu L, Guo F (2020) The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 80:102028. https://doi.org/10.1016/j.npep.2020.102028

    Article  CAS  PubMed  Google Scholar 

  103. Goforth PB, Myers MG (2017) Roles for orexin/hypocretin in the control of energy balance and metabolism. Curr Top Behav Neurosci 33:137–156. https://doi.org/10.1007/7854_2016_51

    Article  CAS  PubMed  Google Scholar 

  104. Choi DL, Davis JF, Magrisso IJ, Fitzgerald ME, Lipton JW, Benoit SC (2012) Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 210:243–248. https://doi.org/10.1016/j.neuroscience.2012.02.036

    Article  CAS  PubMed  Google Scholar 

  105. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49(4):589–601. https://doi.org/10.1016/j.neuron.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  106. Borgland SL, Storm E, Bonci A (2008) Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 28(8):1545–1556. https://doi.org/10.1111/j.1460-9568.2008.06397.x

    Article  CAS  PubMed  Google Scholar 

  107. Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL (2015) Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 172(2):334–348. https://doi.org/10.1111/bph.12639

    Article  CAS  PubMed  Google Scholar 

  108. Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559. https://doi.org/10.1038/nature04071

    Article  CAS  PubMed  Google Scholar 

  109. Chau BKH, Jarvis H, Law CK, Chong TT (2018) Dopamine and reward: a view from the prefrontal cortex. Behav Pharmacol 29(7):569–583. https://doi.org/10.1097/FBP.0000000000000424

    Article  CAS  PubMed  Google Scholar 

  110. Lenard L, Laszlo K, Kertes E, Ollmann T, Peczely L, Kovacs A, Kallai V, Zagoracz O, Galosi R, Karadi Z (2018) Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 85:1–20. https://doi.org/10.1016/j.neubiorev.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  111. Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL (2015) Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. https://doi.org/10.1111/bph.2015.172.issue-2

    Article  PubMed  Google Scholar 

  112. Parsons MP, Li S, Kirouac GJ (2007) Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J Comp Neurol 500(6):1050–1063. https://doi.org/10.1002/cne.21224

    Article  CAS  PubMed  Google Scholar 

  113. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296(5858):659–660. https://doi.org/10.1038/296659a0

    Article  CAS  PubMed  Google Scholar 

  114. Caberlotto L, Fuxe K, Sedvall G, Hurd YL (1997) Localization of neuropeptide Y Y1 mRNA in the human brain: abundant expression in cerebral cortex and striatum. Eur J Neurosci 9(6):1212–1225. https://doi.org/10.1111/j.1460-9568.1997.tb01476.x

    Article  CAS  PubMed  Google Scholar 

  115. Adrian TE, Allen JM, Bloom SR, Ghatei MA, Rossor MN, Roberts GW, Crow TJ, Tatemoto K, Polak JM (1983) Neuropeptide Y distribution in human brain. Nature 306(5943):584–586. https://doi.org/10.1038/306584a0

    Article  CAS  PubMed  Google Scholar 

  116. Tanaka M, Yamada S, Watanabe Y (2021) The role of neuropeptide Y in the nucleus accumbens. Int J Mol Sci. https://doi.org/10.3390/ijms22147287

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38(4):189–200. https://doi.org/10.1016/j.npep.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  118. Lin S, Boey D, Couzens M, Lee N, Sainsbury A, Herzog H (2005) Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides 39(1):21–28. https://doi.org/10.1016/j.npep.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  119. Flood JF, Morley JE (1989) Dissociation of the effects of neuropeptide Y on feeding and memory: evidence for pre- and postsynaptic mediation. Peptides 10(5):963–966. https://doi.org/10.1016/0196-9781(89)90176-9

    Article  CAS  PubMed  Google Scholar 

  120. Sindelar DK, Palmiter RD, Woods SC, Schwartz MW (2005) Attenuated feeding responses to circadian and palatability cues in mice lacking neuropeptide Y. Peptides 26(12):2597–2602. https://doi.org/10.1016/j.peptides.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  121. Zhu P, Sun W, Zhang C, Song Z, Lin S (2016) The role of neuropeptide Y in the pathophysiology of atherosclerotic cardiovascular disease. Int J Cardiol 220:235–241. https://doi.org/10.1016/j.ijcard.2016.06.138

    Article  PubMed  Google Scholar 

  122. Mercer RE, Chee MJ, Colmers WF (2011) The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 32(4):398–415. https://doi.org/10.1016/j.yfrne.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  123. Kask A, Harro J, von Hörsten S, Redrobe JP, Dumont Y, Quirion R (2002) The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 26(3):259–283. https://doi.org/10.1016/S0149-7634(01)00066-5

    Article  CAS  PubMed  Google Scholar 

  124. Kopp J, Xu ZQ, Zhang X, Pedrazzini T, Herzog H, Kresse A, Wong H, Walsh JH, Hökfelt T (2002) Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 111(3):443–532. https://doi.org/10.1016/S0306-4522(01)00463-8

    Article  CAS  PubMed  Google Scholar 

  125. Reichmann F, Holzer P (2016) Neuropeptide Y: a stressful review. Neuropeptides 55:99–109. https://doi.org/10.1016/j.npep.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  126. Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B (2020) NPY and gene therapy for epilepsy: How, When,... and Y. Front Mol Neurosci 13:608001. https://doi.org/10.3389/fnmol.2020.608001

    Article  CAS  PubMed  Google Scholar 

  127. Robinson SL, Thiele TE (2017) The role of neuropeptide Y (NPY) in alcohol and drug abuse disorders. Int Rev Neurobiol 136:177–197. https://doi.org/10.1016/bs.irn.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  128. Pandit R, Luijendijk MC, Vanderschuren LJ, la Fleur SE, Adan RA (2014) Limbic substrates of the effects of neuropeptide Y on intake of and motivation for palatable food. Obesity (Silver Spring) 22(5):1216–1219. https://doi.org/10.1002/oby.20718

    Article  CAS  PubMed  Google Scholar 

  129. Rezitis J, Herzog H, Ip CK (2022) Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 113:110449. https://doi.org/10.1016/j.pnpbp.2021.110449

    Article  CAS  PubMed  Google Scholar 

  130. Quarta D, Leslie CP, Carletti R, Valerio E, Caberlotto L (2011) Central administration of NPY or an NPY-Y5 selective agonist increase in vivo extracellular monoamine levels in mesocorticolimbic projecting areas. Neuropharmacology 60(2–3):328–335. https://doi.org/10.1016/j.neuropharm.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  131. Pickel VM, Beck-Sickinger AG, Chan J, Wieland HA (1998) Y1 receptors in the nucleus accumbens: Ultrastructural localization and association with neuropeptide Y. J Neurosci Res 52(1):54–68

    Article  CAS  PubMed  Google Scholar 

  132. West KS, Roseberry AG (2017) Neuropeptide-Y alters VTA dopamine neuron activity through both pre- and postsynaptic mechanisms. J Neurophysiol 118(1):625–633. https://doi.org/10.1152/jn.00879.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23(10):2677–2685. https://doi.org/10.1111/j.1460-9568.2006.04792.x

    Article  CAS  PubMed  Google Scholar 

  134. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217. https://doi.org/10.1038/nature11527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 18(9):2592–2598. https://doi.org/10.1046/j.1460-9568.2003.02991.x

    Article  CAS  PubMed  Google Scholar 

  136. Meredith GE, Pennartz CMA, & Groenewegen HJ (1993) Chapter 1 The cellular framework for chemical signalling in the nucleus accumbens. Chemical Signalling in the Basal Ganglia, Progress in Brain Research), pp 3–24.

  137. van den Heuvel JK, Furman K, Gumbs MC, Eggels L, Opland DM, Land BB, Kolk SM, Narayanan NS, Fliers E, Kalsbeek A, DiLeone RJ, la Fleur SE (2015) Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity. Biol Psychiatry 77(7):633–641. https://doi.org/10.1016/j.biopsych.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  138. Poher AL, Tschop MH, Muller TD (2018) Ghrelin regulation of glucose metabolism. Peptides 100:236–242. https://doi.org/10.1016/j.peptides.2017.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Norris DO & Carr JA (2013) Chemical regulation of feeding, digestion and metabolism. Vertebrate Endocrinol 443–481.

  140. Lv Y, Liang T, Wang G, Li Z (2018) Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci Rep. https://doi.org/10.1042/BSR20181061

  141. Wellman M, Abizaid A (2015) Knockdown of central ghrelin O-acyltransferase by vivo-morpholino reduces body mass of rats fed a high-fat diet. Peptides 70:17–22. https://doi.org/10.1016/j.peptides.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  142. Trivedi A, Babic S, Heiman M, Gibson WT, Chanoine JP (2017) Ghrelin, Ghrelin O-acyltransferase, and carbohydrate metabolism during pregnancy in calorie-restricted mice. Horm Metab Res 49(1):64–72. https://doi.org/10.1055/s-0042-116117

    Article  CAS  PubMed  Google Scholar 

  143. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. https://doi.org/10.1038/45230

    Article  CAS  PubMed  Google Scholar 

  144. de Araujo IE, Schatzker M, Small DM (2020) Rethinking food reward. Annu Rev Psychol 71(1):139–164. https://doi.org/10.1146/annurev-psych-122216-011643

    Article  PubMed  Google Scholar 

  145. Camina JP (2006) Cell biology of the ghrelin receptor. J Neuroendocrinol 18(1):65–76. https://doi.org/10.1111/j.1365-2826.2005.01379.x

    Article  CAS  PubMed  Google Scholar 

  146. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73(2):317–332. https://doi.org/10.1016/j.neuron.2011.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tauber M, Coupaye M, Diene G, Molinas C, Valette M, Beauloye V (2019) Prader-Willi syndrome: a model for understanding the ghrelin system. J Neuroendocrinol 31(7):e12728. https://doi.org/10.1111/jne.12728

    Article  CAS  PubMed  Google Scholar 

  148. Palotai M, Bagosi Z, Jaszberenyi M, Csabafi K, Dochnal R, Manczinger M, Telegdy G, Szabo G (2013) Ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala. Neurochem Res 38(10):1989–1995. https://doi.org/10.1007/s11064-013-1105-1

    Article  CAS  PubMed  Google Scholar 

  149. Bake T, Le May MV, Edvardsson CE, Vogel H, Bergstrom U, Albers MN, Skibicka KP, Farkas I, Liposits Z, Dickson SL (2020) Ghrelin receptor stimulation of the lateral parabrachial nucleus in rats increases food intake but not food motivation. Obesity (Silver Spring) 28(8):1503–1511. https://doi.org/10.1002/oby.22875

    Article  CAS  PubMed  Google Scholar 

  150. Perello M, Dickson SL (2015) Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J Neuroendocrinol 27(6):424–434. https://doi.org/10.1111/jne.12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Edwards A, Abizaid A (2017) Clarifying the ghrelin system’s ability to regulate feeding behaviours despite enigmatic spatial separation of the GHSR and its endogenous ligand. Int J Mol Sci. https://doi.org/10.3390/ijms18040859

    Article  PubMed  PubMed Central  Google Scholar 

  152. Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7(5):400–409. https://doi.org/10.1016/j.cmet.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  153. Skibicka KP, Hansson C, Egecioglu E, Dickson SL (2012) Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol 17(1):95–107. https://doi.org/10.1111/j.1369-1600.2010.00294.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Date Y (2012) Ghrelin and the vagus nerve. Methods Enzymol 514:261–269. https://doi.org/10.1016/B978-0-12-381272-8.00016-7

    Article  CAS  PubMed  Google Scholar 

  155. Al Massadi O, Nogueiras R, Dieguez C, Girault J-A (2019) Ghrelin and food reward. Neuropharmacology 148:131–138. https://doi.org/10.1016/j.neuropharm.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  156. Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV (2021) Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 172:105847. https://doi.org/10.1016/j.phrs.2021.105847

    Article  CAS  PubMed  Google Scholar 

  157. Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL (2011) Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 180:129–137. https://doi.org/10.1016/j.neuroscience.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  158. Skibicka KP, Shirazi RH, Rabasa-Papio C, Alvarez-Crespo M, Neuber C, Vogel H, Dickson SL (2013) Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin’s effect on food reward but not food intake. Neuropharmacology 73:274–283. https://doi.org/10.1016/j.neuropharm.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  159. Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, Zigman JM (2011) Ghrelin mediates stress-induced food-reward behavior in mice. J Clin Invest 121(7):2684–2692. https://doi.org/10.1172/JCI57660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kawahara Y, Kawahara H, Kaneko F, Yamada M, Nishi Y, Tanaka E, Nishi A (2009) Peripherally administered ghrelin induces bimodal effects on the mesolimbic dopamine system depending on food-consumptive states. Neuroscience 161(3):855–864. https://doi.org/10.1016/j.neuroscience.2009.03.086

    Article  CAS  PubMed  Google Scholar 

  161. Navarro G, Rea W, Quiroz C, Moreno E, Gomez D, Wenthur CJ, Casado V, Leggio L, Hearing MC, Ferre S (2022) Complexes of Ghrelin GHS-R1a, GHS-R1b, and Dopamine D(1) receptors localized in the ventral tegmental area as main mediators of the dopaminergic effects of ghrelin. J Neurosci 42(6):940–953. https://doi.org/10.1523/JNEUROSCI.1151-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Casanovas M, Jimenez-Roses M, Cordomi A, Lillo A, Vega-Quiroga I, Izquierdo J, Medrano M, Gysling K, Pardo L, Navarro G, Franco R (2021) Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addict Biol 26(5):e13017. https://doi.org/10.1111/adb.13017

    Article  CAS  PubMed  Google Scholar 

  163. Jiang H, Betancourt L, Smith RG (2006) Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 20(8):1772–1785. https://doi.org/10.1210/me.2005-0084

    Article  CAS  PubMed  Google Scholar 

  164. Hedegaard MA, Holst B (2020) The complex signaling pathways of the ghrelin receptor. Endocrinology. https://doi.org/10.1210/endocr/bqaa020

    Article  PubMed  Google Scholar 

  165. Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG (2015) Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor. Cell 163(5):1176–1190. https://doi.org/10.1016/j.cell.2015.10.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Casanovas M, Jiménez-Rosés M, Cordomí A, Lillo A, Vega-Quiroga I, Izquierdo J, Medrano M, Gysling K, Pardo L, Navarro G, Franco R (2021) Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: structural and functional properties. Addict Biol 26(5):e13017. https://doi.org/10.1111/adb.13017

    Article  CAS  PubMed  Google Scholar 

  167. Dickson SL, Hrabovszky E, Hansson C, Jerlhag E, Alvarez-Crespo M, Skibicka KP, Molnar CS, Liposits Z, Engel JA, Egecioglu E (2010) Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Neuroscience 171(4):1180–1186. https://doi.org/10.1016/j.neuroscience.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  168. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (2007) Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 12(1):6–16. https://doi.org/10.1111/j.1369-1600.2006.00041.x

    Article  CAS  PubMed  Google Scholar 

  169. Sarret P & Cavelier F (2017) Neurotensin and Its Receptors. Reference Module in Neuroscience and Biobehavioral Psychology, (Elsevier).

  170. Perez-Bonilla P, Santiago-Colon K, Matasovsky J, Ramirez-Virella J, Khan R, Garver H, Fink G, Dorrance AM, Leinninger GM (2021) Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology 195:108639. https://doi.org/10.1016/j.neuropharm.2021.108639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ramirez-Virella J, Leinninger GM (2021) The role of central neurotensin in regulating feeding and body weight. Endocrinology. https://doi.org/10.1210/endocr/bqab038

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tschumi CW, Beckstead MJ (2019) Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci 49(6):784–793. https://doi.org/10.1111/ejn.13858

    Article  PubMed  Google Scholar 

  173. Torruella-Suarez ML, McElligott ZA (2020) Neurotensin in reward processes. Neuropharmacology 167:108005. https://doi.org/10.1016/j.neuropharm.2020.108005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Opland D, Sutton A, Woodworth H, Brown J, Bugescu R, Garcia A, Christensen L, Rhodes C, Myers M Jr, Leinninger G (2013) Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol Metab 2(4):423–434. https://doi.org/10.1016/j.molmet.2013.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Patterson CM, Wong JM, Leinninger GM, Allison MB, Mabrouk OS, Kasper CL, Gonzalez IE, Mackenzie A, Jones JC, Kennedy RT, Myers MG Jr (2015) Ventral tegmental area neurotensin signaling links the lateral hypothalamus to locomotor activity and striatal dopamine efflux in male mice. Endocrinology 156(5):1692–1700. https://doi.org/10.1210/en.2014-1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sotty F, Soulière F, Brun P, Chouvet G, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF (1998) Differential effects of neurotensin on dopamine release in the caudal and rostral nucleus accumbens: a combined in vivo electrochemical and electrophysiological study. Neuroscience 85(4):1173–1182. https://doi.org/10.1016/S0306-4522(97)00691-X

    Article  CAS  PubMed  Google Scholar 

  177. Liang Y, Boules M, Li Z, Williams K, Miura T, Oliveros A, Richelson E (2010) Hyperactivity of the dopaminergic system in NTS1 and NTS2 null mice. Neuropharmacology 58(8):1199–1205. https://doi.org/10.1016/j.neuropharm.2010.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Woodworth HL, Perez-Bonilla PA, Beekly BG, Lewis TJ, Leinninger GM (2018) Identification of neurotensin receptor expressing cells in the ventral tegmental area across the lifespan. eNeuro. https://doi.org/10.1523/ENEURO.0191-17.2018

    Article  PubMed  PubMed Central  Google Scholar 

  179. Grill HJ (2010) Leptin and the systems neuroscience of meal size control. Front Neuroendocrinol 31(1):61–78. https://doi.org/10.1016/j.yfrne.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  180. Schroeder LE, Leinninger GM (2018) Role of central neurotensin in regulating feeding: implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 1864(3):900–916. https://doi.org/10.1016/j.bbadis.2017.12.036

    Article  CAS  PubMed  Google Scholar 

  181. Woodworth HL, Beekly BG, Batchelor HM, Bugescu R, Perez-Bonilla P, Schroeder LE, Leinninger GM (2017) Lateral hypothalamic neurotensin neurons orchestrate dual weight loss behaviors via distinct mechanisms. Cell Rep 21(11):3116–3128. https://doi.org/10.1016/j.celrep.2017.11.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M (2016) Neurotensin: a role in substance use disorder? J Psychopharmacol 30(2):112–127. https://doi.org/10.1177/0269881115622240

    Article  CAS  PubMed  Google Scholar 

  183. Jacobowitz DM, O’Donohue TL (1978) alpha-Melanocyte stimulating hormone: immunohistochemical identification and map** in neurons of rat brain. Proc Natl Acad Sci USA 75(12):6300–6304. https://doi.org/10.1073/pnas.75.12.6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sohn JW (2015) Network of hypothalamic neurons that control appetite. BMB Rep 48(4):229–233. https://doi.org/10.5483/bmbrep.2015.48.4.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hoglund E, Balm PH, Winberg S (2000) Skin darkening, a potential social signal in subordinate arctic charr (Salvelinus alpinus): the regulatory role of brain monoamines and pro-opiomelanocortin-derived peptides. J Exp Biol 203(11):1711–1721. https://doi.org/10.1242/jeb.203.11.1711

    Article  CAS  PubMed  Google Scholar 

  186. Kumbar J, Ganesh CB (2021) Alpha-melanocyte stimulating hormone immunoreactivity in the brain of the cichlid fish Oreochromis mossambicus. Neuropeptides 87:102128. https://doi.org/10.1016/j.npep.2021.102128

    Article  CAS  PubMed  Google Scholar 

  187. Lucas N, Legrand R, Ouelaa W, Breton J, Tennoune N, Bole-Feysot C, Dechelotte P, Fetissov SO (2014) Effects of rabbit anti-alpha-melanocyte-stimulating hormone (alpha-MSH) immunoglobulins on alpha-MSH signaling related to food intake control. Neuropeptides 48(1):21–27. https://doi.org/10.1016/j.npep.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  188. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578. https://doi.org/10.1038/nn1455

    Article  CAS  PubMed  Google Scholar 

  189. Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C (2020) The Melanocortin system behind the dysfunctional eating behaviors. Nutrients. https://doi.org/10.3390/nu12113502

    Article  PubMed  PubMed Central  Google Scholar 

  190. Legrand R, Lucas N, Breton J, Dechelotte P, Fetissov SO (2015) Dopamine release in the lateral hypothalamus is stimulated by alpha-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology 56:79–87. https://doi.org/10.1016/j.psyneuen.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  191. Lippert RN, Ellacott KL, Cone RD (2014) Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 155(5):1718–1727. https://doi.org/10.1210/en.2013-2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. MacNeil DJ, Howard AD, Guan X, Fong TM, Nargund RP, Bednarek MA, Goulet MT, Weinberg DH, Strack AM, Marsh DJ, Chen HY, Shen C-P, Chen AS, Rosenblum CI, MacNeil T, Tota M, MacIntyre ED, Van der Ploeg LHT (2002) The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 440(2):141–157. https://doi.org/10.1016/S0014-2999(02)01425-5

    Article  CAS  PubMed  Google Scholar 

  193. Pandit R, van der Zwaal EM, Luijendijk MC, Brans MA, van Rozen AJ, Oude Ophuis RJ, Vanderschuren LJ, Adan RA, la Fleur SE (2015) Central melanocortins regulate the motivation for sucrose reward. PLoS ONE 10(3):e0121768. https://doi.org/10.1371/journal.pone.0121768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mountjoy KG (2010) Distribution and Function of Melanocortin Receptors within the Brain. Melanocortins: Multiple Actions and Therapeutic Potential, ed Catania A (Springer New York, New York, NY), pp 29–48.

  195. Hsu R, Taylor JR, Newton SS, Alvaro JD, Haile C, Han G, Hruby VJ, Nestler EJ, Duman RS (2005) Blockade of melanocortin transmission inhibits cocaine reward. Eur J Neurosci 21(8):2233–2242. https://doi.org/10.1111/j.1460-9568.2005.04038.x

    Article  PubMed  PubMed Central  Google Scholar 

  196. Roseberry AG, Stuhrman K, Dunigan AI (2015) Regulation of the mesocorticolimbic and mesostriatal dopamine systems by alpha-melanocyte stimulating hormone and agouti-related protein. Neurosci Biobehav Rev 56:15–25. https://doi.org/10.1016/j.neubiorev.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  197. Shanmugarajah L, Dunigan AI, Frantz KJ, Roseberry AG (2017) Altered sucrose self-administration following injection of melanocortin receptor agonists and antagonists into the ventral tegmental area. Psychopharmacology 234(11):1683–1692. https://doi.org/10.1007/s00213-017-4570-4

    Article  CAS  PubMed  Google Scholar 

  198. West KS, Lu C, Olson DP, Roseberry AG (2019) Alpha-melanocyte stimulating hormone increases the activity of melanocortin-3 receptor-expressing neurons in the ventral tegmental area. J Physiol 597(12):3217–3232. https://doi.org/10.1113/JP277193

    Article  CAS  PubMed  Google Scholar 

  199. Pandit R, Omrani A, Luijendijk MC, de Vrind VA, Van Rozen AJ, Ophuis RJ, Garner K, Kallo I, Ghanem A, Liposits Z, Conzelmann KK, Vanderschuren LJ, la Fleur SE, Adan RA (2016) Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology 41(9):2241–2251. https://doi.org/10.1038/npp.2016.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73(6):1184–1194. https://doi.org/10.1016/j.neuron.2012.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Upadhya MA, Upadhya HM, Borkar CD, Choudhary AG, Singh U, Chavan P, Sakharkar A, Singru P, Subhedar NK, Kokare DM (2020) Nicotine-induced brain stimulation reward is modulated by melanocortin-4 receptors in ovariectomized rats. Neuroscience 431:205–221. https://doi.org/10.1016/j.neuroscience.2020.01.035

    Article  CAS  PubMed  Google Scholar 

  202. Dunigan AI, Olson DP, Roseberry AG (2021) VTA MC3R neurons control feeding in an activity- and sex-dependent manner in mice. Neuropharmacology 197:108746. https://doi.org/10.1016/j.neuropharm.2021.108746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lerma-Cabrera JM, Carvajal F, Chotro G, Gaztanaga M, Navarro M, Thiele TE, Cubero I (2013) MC4-R signaling within the nucleus accumbens shell, but not the lateral hypothalamus, modulates ethanol palatability in rats. Behav Brain Res 239:51–54. https://doi.org/10.1016/j.bbr.2012.10.055

    Article  CAS  PubMed  Google Scholar 

  204. Lerma-Cabrera JM, Carvajal F, de la Torre L, de la Fuente L, Navarro M, Thiele TE, Cubero I (2012) Control of food intake by MC4-R signaling in the lateral hypothalamus, nucleus accumbens shell and ventral tegmental area: interactions with ethanol. Behav Brain Res 234(1):51–60. https://doi.org/10.1016/j.bbr.2012.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ward HG, Nicklous DM, Aloyo VJ, Simansky KJ (2006) Mu-opioid receptor cellular function in the nucleus accumbens is essential for hedonically driven eating. Eur J Neurosci 23(6):1605–1613. https://doi.org/10.1111/j.1460-9568.2006.04674.x

    Article  PubMed  Google Scholar 

  206. Carvajal F, Lerma-Cabrera JM, Alcaraz-Iborra M, Navarro M, Thiele TE, Cubero I (2017) Nucleus accumbens MC4-R stimulation reduces food and ethanol intake in adult rats regardless of binge-like ethanol exposure during adolescence. Front Behav Neurosci 11:167. https://doi.org/10.3389/fnbeh.2017.00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC (2012) Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487(7406):183–189. https://doi.org/10.1038/nature11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA, Neve RL, Deisseroth K, Nestler EJ (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30(48):16082–16090. https://doi.org/10.1523/JNEUROSCI.1731-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. DiFeliceantonio AG, Kenny PJ (2018) Melanocortin 4 receptors switch reward to aversion. J Clin Invest 128(7):2757–2759. https://doi.org/10.1172/JCI121653

    Article  PubMed  PubMed Central  Google Scholar 

  210. Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X, Zhang Y (2021) Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 24(12):1757–1771. https://doi.org/10.1038/s41593-021-00938-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443(7112):709–712. https://doi.org/10.1038/nature05162

    Article  CAS  Google Scholar 

  212. Palasz A, Bogus K, Suszka-Switek A, Kaskosz A, Saint-Remy S, Piwowarczyk-Nowak A, Filipczyk L, Worthington JJ, Mordecka-Chamera K, Kostro K, Bajor G, Wiaderkiewicz R (2019) The first identification of nesfatin-1-expressing neurons in the human bed nucleus of the stria terminalis. J Neural Transm (Vienna) 126(3):349–355. https://doi.org/10.1007/s00702-019-01984-3

    Article  CAS  PubMed  Google Scholar 

  213. Guo FF, Xu L, Gao SL, Sun XR, Li ZL, Gong YL (2015) The effects of nesfatin-1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. J Neurochem 132(3):266–275. https://doi.org/10.1111/jnc.12973

    Article  CAS  PubMed  Google Scholar 

  214. Stengel A (2015) Nesfatin-1 - More than a food intake regulatory peptide. Peptides 72:175–183. https://doi.org/10.1016/j.peptides.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  215. Dore R, Levata L, Lehnert H, Schulz C (2017) Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 232(1):R45–R65. https://doi.org/10.1530/JOE-16-0361

    Article  CAS  PubMed  Google Scholar 

  216. Goebel-Stengel M, Wang L, Stengel A, Tache Y (2011) Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res 1396:20–34. https://doi.org/10.1016/j.brainres.2011.04.031

    Article  CAS  PubMed  Google Scholar 

  217. Prinz P, Goebel-Stengel M, Teuffel P, Rose M, Klapp BF, Stengel A (2016) Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats. Biochem Biophys Res Commun 470(3):521–527. https://doi.org/10.1016/j.bbrc.2016.01.113

    Article  CAS  PubMed  Google Scholar 

  218. Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ (2007) Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 148(10):5088–5094. https://doi.org/10.1210/en.2007-0701

    Article  CAS  PubMed  Google Scholar 

  219. Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Tache Y, Stengel A (2020) NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 128:170308. https://doi.org/10.1016/j.peptides.2020.170308

    Article  CAS  PubMed  Google Scholar 

  220. Zhang T, Wang M, Liu L, He B, Hu J, Wang Y (2019) Hypothalamic nesfatin-1 mediates feeding behavior via MC3/4R-ERK signaling pathway after weight loss in obese Sprague-Dawley rats. Peptides 119:170080. https://doi.org/10.1016/j.peptides.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  221. Psilopanagioti A, Nikou S, Papadaki H (2019) Nucleobindin-2/Nesfatin-1 in the human hypothalamus is reduced in obese subjects and colocalizes with oxytocin, vasopressin, melanin-concentrating hormone, and cocaine- and amphetamine-regulated transcript. Neuroendocrinology 108(3):190–200. https://doi.org/10.1159/000496731

    Article  CAS  PubMed  Google Scholar 

  222. Chen X, Shu X, Cong ZK, Jiang ZY, Jiang H (2015) Nesfatin-1 acts on the dopaminergic reward pathway to inhibit food intake. Neuropeptides 53:45–50. https://doi.org/10.1016/j.npep.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  223. Lefner MJ, Wanat MJ (2020) Nesfatin-1 puts the brakes on reward-based feeding. Neuropsychopharmacology 45(10):1591–1592. https://doi.org/10.1038/s41386-020-0695-y

    Article  PubMed  PubMed Central  Google Scholar 

  224. Li C, Zhang F, Shi L, Zhang H, Tian Z, **e J, Jiang H (2014) Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci 52(3):419–424. https://doi.org/10.1007/s12031-013-0169-3

    Article  CAS  PubMed  Google Scholar 

  225. Kerbel B, Unniappan S (2012) Nesfatin-1 suppresses energy intake, co-localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol 24(2):366–377. https://doi.org/10.1111/j.1365-2826.2011.02246.x

    Article  CAS  PubMed  Google Scholar 

  226. Maejima Y, Sedbazar U, Suyama S, Kohno D, Onaka T, Takano E, Yoshida N, Koike M, Uchiyama Y, Fujiwara K, Yashiro T, Horvath TL, Dietrich MO, Tanaka S, Dezaki K, Oh IS, Hashimoto K, Shimizu H, Nakata M, Mori M, Yada T (2009) Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab 10(5):355–365. https://doi.org/10.1016/j.cmet.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  227. Yosten GL, Samson WK (2010) The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 298(6):R1642-1647. https://doi.org/10.1152/ajpregu.00804.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yosten GL, Samson WK (2009) Nesfatin-1 exerts cardiovascular actions in brain: possible interaction with the central melanocortin system. Am J Physiol Regul Integr Comp Physiol 297(2):R330-336. https://doi.org/10.1152/ajpregu.90867.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kanoski SE, Hayes MR, Skibicka KP (2016) GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 310(10):R885-895. https://doi.org/10.1152/ajpregu.00520.2015

    Article  PubMed  PubMed Central  Google Scholar 

  230. Dossat AM, Lilly N, Kay K, Williams DL (2011) Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31(41):14453–14457. https://doi.org/10.1523/JNEUROSCI.3262-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Katsurada K, Maejima Y, Nakata M, Kodaira M, Suyama S, Iwasaki Y, Kario K, Yada T (2014) Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. Biochem Biophys Res Commun 451(2):276–281. https://doi.org/10.1016/j.bbrc.2014.07.116

    Article  CAS  PubMed  Google Scholar 

  232. Muller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschop MH (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/j.molmet.2019.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP (2014) Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 136:135–144. https://doi.org/10.1016/j.physbeh.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  234. Bueno-Carrasco MT, Cuellar J, Flydal MI, Santiago C, Krakenes TA, Kleppe R, Lopez-Blanco JR, Marcilla M, Teigen K, Alvira S, Chacon P, Martinez A, Valpuesta JM (2022) Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nat Commun 13(1):74. https://doi.org/10.1038/s41467-021-27657-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Skibicka KP (2013) The central GLP-1: implications for food and drug reward. Front Neurosci 7:181. https://doi.org/10.3389/fnins.2013.00181

    Article  PubMed  PubMed Central  Google Scholar 

  236. Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153(2):647–658. https://doi.org/10.1210/en.2011-1443

    Article  CAS  PubMed  Google Scholar 

  237. Ong ZY, Liu JJ, Pang ZP, Grill HJ (2017) Paraventricular thalamic control of food intake and reward: role of glucagon-like peptide-1 receptor signaling. Neuropsychopharmacology 42(12):2387–2397. https://doi.org/10.1038/npp.2017.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellstrom PM (2009) Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil 21(9):978-e978. https://doi.org/10.1111/j.1365-2982.2009.01317.x

    Article  CAS  PubMed  Google Scholar 

  239. Labouebe G, Thorens B, Lamy C (2018) GLUT2-expressing neurons as glucose sensors in the brain: electrophysiological analysis. Methods Mol Biol 1713:255–267. https://doi.org/10.1007/978-1-4939-7507-5_19

    Article  CAS  PubMed  Google Scholar 

  240. Lei H, Preitner F, Labouebe G, Gruetter R, Thorens B (2019) Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow. J Cereb Blood Flow Metab 39(9):1725–1736. https://doi.org/10.1177/0271678X18766743

    Article  CAS  PubMed  Google Scholar 

  241. Labouebe G, Boutrel B, Tarussio D, Thorens B (2016) Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior. Nat Neurosci 19(8):999–1002. https://doi.org/10.1038/nn.4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kelley AE, Baldo BA, Pratt WE (2005) A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J Comp Neurol 493(1):72–85. https://doi.org/10.1002/cne.20769

    Article  CAS  PubMed  Google Scholar 

  243. Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP (2012) The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 32(14):4812–4820. https://doi.org/10.1523/JNEUROSCI.6326-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hayes MR, Leichner TM, Zhao S, Lee GS, Chowansky A, Zimmer D, De Jonghe BC, Kanoski SE, Grill HJ, Bence KK (2016) Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab 23(4):745. https://doi.org/10.1016/j.cmet.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  245. Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim BK, Seeley RJ, Zhu JJ, Scott MM, Pang ZP (2017) Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous glucagon-like peptide-1 in the paraventricular hypothalamus. Neuron 96(4):897–909. https://doi.org/10.1016/j.neuron.2017.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641. https://doi.org/10.1038/nn.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hajnal A, Margas WM, Covasa M (2008) Altered dopamine D2 receptor function and binding in obese OLETF rat. Brain Res Bull 75(1):70–76. https://doi.org/10.1016/j.brainresbull.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  248. Wang XF, Liu JJ, **a J, Liu J, Mirabella V, Pang ZP (2015) Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep 12(5):726–733. https://doi.org/10.1016/j.celrep.2015.06.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Valdivia S, Cornejo MP, Reynaldo M, De Francesco PN, Perello M (2015) Escalation in high fat intake in a binge eating model differentially engages dopamine neurons of the ventral tegmental area and requires ghrelin signaling. Psychoneuroendocrinology 60:206–216. https://doi.org/10.1016/j.psyneuen.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  250. Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L, Silvestri C, Petrosino S, Orlando P, Bentivoglio M, Mackie K, Di Marzo V (2013) Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc Natl Acad Sci U S A 110(24):E2229-2238. https://doi.org/10.1073/pnas.1219485110

    Article  PubMed  PubMed Central  Google Scholar 

  251. Arora S, Anubhuti, (2006) Role of neuropeptides in appetite regulation and obesity–a review. Neuropeptides 40(6):375–401. https://doi.org/10.1016/j.npep.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  252. Shaw JK, Ferris MJ, Locke JL, Brodnik ZD, Jones SR, España RA (2017) Hypocretin/orexin knock-out mice display disrupted behavioral and dopamine responses to cocaine. Addict Biol 22(6):1695–1705. https://doi.org/10.1111/adb.12432

    Article  CAS  PubMed  Google Scholar 

  253. Sorensen G, Jensen M, Weikop P, Dencker D, Christiansen SH, Loland CJ, Bengtsen CH, Petersen JH, Fink-Jensen A, Wortwein G, Woldbye DP (2012) Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice. Psychopharmacology 222(4):565–577. https://doi.org/10.1007/s00213-012-2651-y

    Article  CAS  PubMed  Google Scholar 

  254. Bessesen DH, Van Gaal LF (2018) Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol 6(3):237–248. https://doi.org/10.1016/S2213-8587(17)30236-X

    Article  PubMed  Google Scholar 

  255. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Ryan DH, Still CD, Endocrine S (2015) Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100(2):342–362. https://doi.org/10.1210/jc.2014-3415

    Article  CAS  PubMed  Google Scholar 

  256. Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, Toplak H, Obesity Management Task Force of the European Association for the Study of O (2015) European Guidelines for Obesity Management in Adults. Obes Facts 8(6):402–424. https://doi.org/10.1159/000442721

    Article  PubMed  PubMed Central  Google Scholar 

  257. Boutin JA, Jullian M, Frankiewicz L, Galibert M, Gloanec P, Le Diguarher T, Dupuis P, Ko A, Ripoll L, Bertrand M, Pecquery A, Ferry G, & Puget K (2021) MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice. Molecules, doi: https://doi.org/10.3390/molecules26051291

  258. Luthin DR (2007) Anti-obesity effects of small molecule melanin-concentrating hormone receptor 1 (MCHR1) antagonists. Life Sci 81(6):423–440. https://doi.org/10.1016/j.lfs.2007.05.029

    Article  CAS  PubMed  Google Scholar 

  259. Anonymous (2013) Br J Pharmacol 170(7), doi: https://doi.org/10.1111/bph.2013.170.issue-7

  260. Erondu N, Gantz I, Musser B, Suryawanshi S, Mallick M, Addy C, Cote J, Bray G, Fujioka K, Bays H, Hollander P, Sanabria-Bohorquez SM, Eng W, Langstrom B, Hargreaves RJ, Burns HD, Kanatani A, Fukami T, MacNeil DJ, Gottesdiener KM, Amatruda JM, Kaufman KD, Heymsfield SB (2006) Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab 4(4):275–282. https://doi.org/10.1016/j.cmet.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  261. Shende P, Desai D (2020) Physiological and therapeutic roles of neuropeptide Y on biological functions. Adv Exp Med Biol 1237:37–47. https://doi.org/10.1007/5584_2019_427

    Article  CAS  PubMed  Google Scholar 

  262. Lu X, Huang L, Huang Z, Feng D, Clark RJ, Chen C (2021) LEAP-2: an emerging endogenous ghrelin receptor antagonist in the pathophysiology of obesity. Front Endocrinol (Lausanne) 12:717544. https://doi.org/10.3389/fendo.2021.717544

    Article  PubMed  Google Scholar 

  263. Gupta D, Ogden SB, Shankar K, Varshney S, Zigman JM (2021) A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes. Mol Metab 46:101128. https://doi.org/10.1016/j.molmet.2020.101128

    Article  CAS  PubMed  Google Scholar 

  264. Clement K, van den Akker E, Argente J, Bahm A, Chung WK, Connors H, De Waele K, Farooqi IS, Gonneau-Lejeune J, Gordon G, Kohlsdorf K, Poitou C, Puder L, Swain J, Stewart M, Yuan G, Wabitsch M, Kuhnen P, Setmelanotide P, Investigators LPT (2020) Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol 8(12):960–970. https://doi.org/10.1016/S2213-8587(20)30364-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Number: 31971060).

Author information

Authors and Affiliations

Authors

Contributions

Author XRS was responsive for the conception, design, and revision of the article. Author RJJ and SBS wrote the first draft of the manuscript. Authors YH and HFZ arranged references and made figures. All authors contributed to and have approved the final manuscript.

Corresponding author

Correspondence to **angrong Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, R., Sun, S., Hu, Y. et al. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 48, 2622–2643 (2023). https://doi.org/10.1007/s11064-023-03954-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03954-4

Keywords

Navigation