Log in

Sintocalmy, a Passiflora incarnata Based Herbal, Attenuates Morphine Withdrawal in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic opioid use changes brain chemistry in areas related to reward processes, memory, decision-making, and addiction. Both neurons and astrocytes are affected, ultimately leading to dependence. Passiflora incarnata L. (Passifloraceae) is the basis of frequently used herbals to manage anxiety and insomnia, with proven central nervous system depressant effects. Anti-addiction properties of P. incarnata have been reported. The aim of this study was to investigate the effect of a commercial extract of Passiflora incarnata (Sintocalmy®, Aché Laboratory) in the naloxone-induced jum** mice model of morphine withdrawal. In addition, glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) levels were assessed in the frontal cortex and hippocampus, and DNA damage was verified on blood cells. In order to improve solubilization a Sintocalmy methanol extract (SME) was used. SME is mainly composed by flavonoids isovitexin and vitexin. The effects of SME 50, 100 and 200 mg/kg (i.p.) were evaluated in the naloxone-induced withdrawal syndrome in mice. SME 50 and SME 100 mg/kg decreased naloxone-induced jum** in morphine-dependent mice without reducing locomotor activity. No alterations were found in GFAP levels, however SME 50 mg/kg prevented the S100B increase in the frontal cortex and DNA damage. This study shows anti-addiction effects for a commercial standardized extract of P. incarnata and suggests the relevance of proper clinical assessment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United Nations Office on Drugs and Crime (2019) World Drug Report 2019. United Nations publication

  2. Bouzyk-Szutkiewicz J, Waszkiewicz N, Szulc A (2012) [Alcohol and psychiatric disorders]. Pol Merkur Lek Organ Pol Tow Lek 33:176–181

    Google Scholar 

  3. Rudd RA, Seth P, David F, Scholl L (2016) Increases in Drug and Opioid-Involved Overdose Deaths — United States, 2010–2015. MMWR Morb Mortal Wkly Rep 65:1445–1452. https://doi.org/10.15585/mmwr.mm655051e1

    Article  PubMed  Google Scholar 

  4. Seth P, Scholl L, Rudd RA, Bacon S (2018) Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants — United States, 2015–2016. MMWR Morb Mortal Wkly Rep 67:349–358. https://doi.org/10.15585/mmwr.mm6712a1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. The lancet Psychiatry 3:760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69:628–649. https://doi.org/10.1016/j.neuron.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725. https://doi.org/10.1016/J.CELL.2015.07.046

    Article  CAS  PubMed  Google Scholar 

  8. Li J-H, Lin L-F (1998) Genetic toxicology of abused drugs: a brief review. Mutagenesis 13:557–565. https://doi.org/10.1093/mutage/13.6.557

    Article  CAS  PubMed  Google Scholar 

  9. Tsujikawa H, Shoda T, Mizota T, Fukuda K (2009) Morphine induces DNA damage and P53 activation in CD3 + T cells. Biochim Biophys Acta - Gen Subj 1790:793–799. https://doi.org/10.1016/j.bbagen.2009.04.011

    Article  CAS  Google Scholar 

  10. Feng Y-M, Jia Y-F, Su L-Y et al (2013) Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 9:1395–1406. https://doi.org/10.4161/auto.25468

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds AR, Williams LA, Saunders MA, Prendergast MA (2015) Group 1 mGlu-family proteins promote neuroadaptation to ethanol and withdrawal-associated hippocampal damage. Drug Alcohol Depend 156:213–220. https://doi.org/10.1016/j.drugalcdep.2015.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perea G, Araque A (2005) Properties of Synaptically Evoked Astrocyte Calcium Signal Reveal Synaptic Information Processing by Astrocytes. J Neurosci 25:2192–2203. https://doi.org/10.1523/JNEUROSCI.3965-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci. https://doi.org/10.3389/fncel.2014.00378

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beitner-Johnson D, Guitart X, Nestler EJ (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem 61:1766–1773

    Article  CAS  Google Scholar 

  15. García-Sevilla JA, Ventayol P, Busquets X et al (1997) Marked decrease of immunolabelled 68 kDa neurofilament (NF-L) proteins in brains of opiate addicts. Neuroreport 8:1561–1565

    Article  Google Scholar 

  16. Ferrer-Alcón M, García-Sevilla JA, Jaquet PE, et al (2000) Regulation of nonphosphorylated and phosphorylated forms of neurofilament proteins in the prefrontal cortex of human opioid addicts. J Neurosci Res 61:338–349. https://doi.org/10.1002/1097-4547(20000801)61:3<338::AID-JNR12>3.0.CO;2-5

    Article  PubMed  Google Scholar 

  17. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286

    Article  CAS  Google Scholar 

  18. Marie-Claire C, Courtin C, Roques BP, Noble F (2004) Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacology 29:2208–2215. https://doi.org/10.1038/sj.npp.1300513

    Article  CAS  PubMed  Google Scholar 

  19. Weber M, Scherf N, Kahl T et al (2013) Quantitative analysis of astrogliosis in drug-dependent humans. Brain Res 1500:72–87. https://doi.org/10.1016/j.brainres.2012.12.048

    Article  CAS  PubMed  Google Scholar 

  20. Bart G (2012) Maintenance medication for opiate addiction: the foundation of recovery. J Addict Dis 31:207–225. https://doi.org/10.1080/10550887.2012.694598

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blum K, Han D, Modestino EJ et al (2018) A systematic, intensive statistical investigation of data from the comprehensive analysis of reported drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone. Subst Use Misuse 53:220–229. https://doi.org/10.1080/10826084.2017.1400064

    Article  PubMed  Google Scholar 

  22. Weiss RD, Rao V (2017) The Prescription opioid addiction treatment study: what have we learned. Drug Alcohol Depend 173 Suppl:S48–S54. https://doi.org/10.1016/j.drugalcdep.2016.12.001

  23. Bisaga A, Popik P (2000) In search of a new pharmacological treatment for drug and alcohol addiction: N-methyl-D-aspartate (NMDA) antagonists. Drug Alcohol Depend 59:1–15

    Article  CAS  Google Scholar 

  24. Leal MB, Michelin K, Souza DO, Elisabetsky E (2003) Ibogaine attenuation of morphine withdrawal in mice: role of glutamate N-methyl-d-aspartate receptors. Prog Neuro-Psychopharmacology Biol Psychiatry 27:781–785. https://doi.org/10.1016/S0278-5846(03)00109-X

    Article  CAS  Google Scholar 

  25. Catania MA, Firenzuoli F, Crupi A et al (2003) Hypericum perforatum attenuates nicotine withdrawal signs in mice. Psychopharmacology 169:186–189. https://doi.org/10.1007/s00213-003-1492-0

    Article  CAS  PubMed  Google Scholar 

  26. Coskun I, Tayfun Uzbay I, Ozturk N, Ozturk Y (2006) Attenuation of ethanol withdrawal syndrome by extract of Hypericum perforatum in Wistar rats. Fundam Clin Pharmacol 20:481–488. https://doi.org/10.1111/j.1472-8206.2006.00432.x

    Article  CAS  PubMed  Google Scholar 

  27. Feily A, Abbasi N (2009) The inhibitory effect of Hypericum perforatum extract on morphine withdrawal syndrome in rat and comparison with clonidine. Phyther Res 23:1549–1552. https://doi.org/10.1002/ptr.2807

    Article  CAS  Google Scholar 

  28. Khan M, Subhan F, Khan A et al (2014) Nature cures nature: Hypericum perforatum attenuates physical withdrawal signs in opium dependent rats. Pharm Biol 52:586–590. https://doi.org/10.3109/13880209.2013.854811

    Article  PubMed  Google Scholar 

  29. Groth-Marnat G, Leslie S, Renneker M (1996) Tobacco control in a traditional Fijian village: Indigenous methods of smoking cessation and relapse prevention. Soc Sci Med 43:473–477. https://doi.org/10.1016/0277-9536(95)00425-4

    Article  CAS  PubMed  Google Scholar 

  30. Seitz U, Schüle A, Gleitz J (1997) [3H]-Monoamine Uptake Inhibition Properties of Kava Pyrones. Planta Med 63:548–549. https://doi.org/10.1055/s-2006-957761

    Article  CAS  PubMed  Google Scholar 

  31. Steiner GG (2001) Kava as an anticraving agent: preliminary data. Pac Health Dialog 8:335–339

    CAS  PubMed  Google Scholar 

  32. Capasso A, Sorrentino L (2005) Pharmacological studies on the sedative and hypnotic effect of Kava kava and Passiflora extracts combination. Phytomedicine 12:39–45. https://doi.org/10.1016/J.PHYMED.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Akhondzadeh S, Kashani L, Mobaseri M et al (2001) Passionflower in the treatment of opiates withdrawal: a double-blind randomized controlled trial. J Clin Pharm Ther 26:369–373

    Article  CAS  Google Scholar 

  34. Dhawan K, Kumar S, Sharma A (2002) Reversal of morphine tolerance and dependence by Passiflora incarnata—a traditional medicine to combat morphine addiction. Pharm Biol 40:576–580. https://doi.org/10.1076/phbi.40.8.576.14660

    Article  Google Scholar 

  35. Dhawan K, Kumar S, Sharma A (2002) Suppression of alcohol-cessation-oriented hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linneaus in mice. J Ethnopharmacol 81:239–244

    Article  CAS  Google Scholar 

  36. Dhawan K, Dhawan S, Chhabra S (2003) Attenuation of benzodiazepine dependence in mice by a tri-substituted benzoflavone moiety of Passiflora incarnata Linneaus: a non-habit forming anxiolytic. J Pharm Pharm Sci A Publ Can Soc Pharm Sci Soc Can Des Sci Pharm 6:215–222

    CAS  Google Scholar 

  37. Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94:1–23. https://doi.org/10.1016/j.jep.2004.02.023

    Article  CAS  PubMed  Google Scholar 

  38. Neuwinger HD (2000) African traditional medicine: a dictionary of plant use and applications with supplement: search system for diseases. Medpharm Scientific Publishers, Stuttgart

    Google Scholar 

  39. Miroddi M, Calapai G, Navarra M et al (2013) Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol 150:791–804. https://doi.org/10.1016/j.jep.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  40. Grundmann O, Wang J, McGregor G, Butterweck V (2008) Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med 74:1769–1773. https://doi.org/10.1055/s-0028-1088322

    Article  CAS  PubMed  Google Scholar 

  41. Elsas S-M, Rossi DJ, Raber J et al (2010) Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine 17:940–949. https://doi.org/10.1016/j.phymed.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Appel K, Rose T, Fiebich B et al (2011) Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L. Phyther Res 25:838–843. https://doi.org/10.1002/ptr.3352

    Article  CAS  Google Scholar 

  43. Jawna-Zboińska K, Blecharz-Klin K, Joniec-Maciejak I et al (2016) Passiflora incarnata L. improves spatial memory, reduces stress, and affects neurotransmission in rats. Phyther Res PTR 30:781–789. https://doi.org/10.1002/ptr.5578

    Article  PubMed  Google Scholar 

  44. Schunck RVA, Macedo IC, Laste G et al (2017) Standardized Passiflora incarnata L. extract reverts the analgesia induced by alcohol withdrawal in rats. Phyther Res 31:1199–1208. https://doi.org/10.1002/ptr.5839

    Article  CAS  Google Scholar 

  45. Vasudev V (1955) Dhanwantri Banoshdhi Visheshank. Gurukul Kangri Prakashak, Haridwar, India 364–366

    Google Scholar 

  46. Dhawan K, Kumar S, Sharma A (2001) Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol 78:165–170. https://doi.org/10.1016/S0378-8741(01)00339-7

    Article  CAS  PubMed  Google Scholar 

  47. Maciel ÉS, Biasibetti R, Costa AP et al (2014) Subchronic oral administration of benzo[a]pyrene impairs motor and cognitive behavior and modulates S100B levels and MAPKs in rats. Neurochem Res 39:731–740. https://doi.org/10.1007/s11064-014-1261-y

    Article  CAS  PubMed  Google Scholar 

  48. Popik P, Layer RT, Fossom LH et al (1995) NMDA antagonist properties of the putative antiaddictive drug, ibogaine. J Pharmacol Exp Ther 275:753

    CAS  PubMed  Google Scholar 

  49. Zarrindast M-R, Farzin D (1996) Nicotine attenuates naloxone-induced jum** behaviour in morphine-dependent mice. Eur J Pharmacol 298:1–6. https://doi.org/10.1016/0014-2999(95)00761-X

    Article  CAS  PubMed  Google Scholar 

  50. Paxinos G, Keith BJ, Franklin MA (2007) The Mouse Brain in Stereotaxic Coordinates, 3rd ed. Elsevier Science

  51. Leite MC, Galland F, Brolese G et al (2008) A simple, sensitive and widely applicable ELISA for S100B: Methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99. https://doi.org/10.1016/j.jneumeth.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  52. Tramontina F, Leite MC, Cereser K et al (2007) Immunoassay for glial fibrillary acidic protein: Antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286. https://doi.org/10.1016/j.jneumeth.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  53. Göethel G, Brucker N, Moro M A, et al (2014) Evaluation of genotoxicity in workers exposed to benzene and atmospheric pollutants. Mutat Res Toxicol Environ Mutagen 770:61–65. https://doi.org/10.1016/j.mrgentox.2014.05.008

    Article  CAS  Google Scholar 

  54. Kerachian N, Alaee H, Gharavi-Naini M et al (2007) Effects of alcoholic extract of Avena sativa, Hypericum perforatum, Passiflora incarnata and Lavandula officinalis on symptoms of morphine withdrawal syndrome in rats. Physiol-Pharmacol 10:313–321

    Google Scholar 

  55. Zarrindast M-R, Mousa-Ahmadi E (1999) Effects of GABAergic system on naloxone-induced jum** in morphine-dependent mice. Eur J Pharmacol 381:129–133. https://doi.org/10.1016/S0014-2999(99)00546-4

    Article  CAS  PubMed  Google Scholar 

  56. Yuan L, Wang J, **ao HF et al (2012) Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicol Appl Pharmacol 265:83

    Article  CAS  Google Scholar 

  57. Yuan L, Han X, Li W et al (2016) Isoorientin prevents hyperlipidemia and liver injury by regulating lipid metabolism, antioxidant capability, and inflammatory cytokine release in high-fructose-fed mice. J Agric Food Chem 64:2682–2689. https://doi.org/10.1021/acs.jafc.6b00290

    Article  CAS  PubMed  Google Scholar 

  58. Lam KY, Ling APK, Koh RY et al (2016) A review on medicinal properties of orientin. Adv Pharmacol Sci. https://doi.org/10.1155/2016/4104595

    Article  PubMed  PubMed Central  Google Scholar 

  59. Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci 15:186–191

    Article  CAS  Google Scholar 

  60. Aman U, Subhan F, Shahid M et al (2016) Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms. BMC Complement Altern Med. https://doi.org/10.1186/s12906-016-1048-6

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ayres ASFSJ, Santos WB, Junqueira-Ayres DD et al (2017) Monoaminergic neurotransmission is mediating the antidepressant-like effects of Passiflora edulis Sims fo. edulis. Neurosci Lett 660:79–85. https://doi.org/10.1016/j.neulet.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  62. Donato R, Cannon BR, Sorci G et al (2013) Functions of S100 proteins. Curr Mol Med 13:24–57

    Article  CAS  Google Scholar 

  63. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  64. Brvar M, Ambrozic J, Osredkar J et al (2005) S100B protein in heroin overdose: a pilot study. Crit Care 9:P290. https://doi.org/10.1186/cc3353

    Article  PubMed Central  Google Scholar 

  65. Granstrem O, Adriani W, Shumilina M et al (2006) Specific changes in levels of autoantibodies to glutamate and opiate receptors induced by morphine administration in rats. Neurosci Lett 403:1–5. https://doi.org/10.1016/j.neulet.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  66. Leite MC (2010) O envolvimento do cálcio e das junções gap na secreção de S100B em astrócitos de ratos. Universidade Federal do Rio Grande do Sul. Instituto de Ciências Básicas da Saúde. Programa de Pós-Graduação em Ciências Biológicas: Bioquímica

  67. Girard M, Malauzat D, Nubukpo P (2019) Serum inflammatory molecules and markers of neuronal damage in alcohol-dependent subjects after withdrawal. World J Biol Psychiatry 20:76–90. https://doi.org/10.1080/15622975.2017.1349338

    Article  PubMed  Google Scholar 

  68. Wedekind D, Neumann K, Falkai P et al (2011) S100B and homocysteine in the acute alcohol withdrawal syndrome. Eur Arch Psychiatry Clin Neurosci 261:133–138. https://doi.org/10.1007/s00406-010-0121-2

    Article  PubMed  Google Scholar 

  69. Amaral GF, Dossa PD, Viebig LB et al (2016) Astrocytic expression of GFAP and serum levels of IL-1β and TNF-α in rats treated with different pain relievers. Brazilian J Pharm Sci 52:623–633. https://doi.org/10.1590/s1984-82502016000400006

    Article  CAS  Google Scholar 

  70. Skrabalova J, Drastichova Z, Novotny J (2013) Morphine as a Potential Oxidative Stress-Causing Agent. Mini Rev Org Chem 10:367–372. https://doi.org/10.2174/1570193X113106660031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barzilai A, Yamamoto K-I (2004) DNA damage responses to oxidative stress. DNA Repair 3:1109–1115. https://doi.org/10.1016/j.dnarep.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  72. Xu B, Wang Z, Li G et al (2006) Heroin-Administered Mice Involved in Oxidative Stress and Exogenous Antioxidant-Alleviated Withdrawal Syndrome. Basic Clin Pharmacol Toxicol 99:153–161. https://doi.org/10.1111/j.1742-7843.2006.pto_461.x

    Article  CAS  PubMed  Google Scholar 

  73. Shafer DA, **e Y, Falek A (1994) Detection of opiate-enhanced increases in DNA damage, HPRT mutants, and the mutation frequency in human HUT-78 cells. Environ Mol Mutagen 23:37–44. https://doi.org/10.1002/em.2850230107

    Article  CAS  PubMed  Google Scholar 

  74. López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta 763:1–10. https://doi.org/10.1016/j.aca.2012.11.051

    Article  CAS  PubMed  Google Scholar 

  75. Kim JHH, Lee BC, Kim JHH et al (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28:195. https://doi.org/10.1007/BF02977715

    Article  CAS  PubMed  Google Scholar 

  76. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523

    Article  Google Scholar 

  77. Fang An FA, **nxin Cao XC, Haiqi Qu HQ, Shuhua Wang SW (2015) Attenuation of oxidative stress of erythrocytes by the plant-derived flavonoids vitexin and apigenin. 724–732. https://doi.org/10.1691/ph.2015.5665

  78. Lee EB, Kim JH, Cha Y-S et al (2015) Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans. Biomol Ther (Seoul) 23:582–589. https://doi.org/10.4062/biomolther.2015.128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the following Brazilian funding agencies: National Council for Scientific and Technological Development - CNPq; Committee for the Development of Higher Education Personnel—CAPES, Fundação de Amparo a Pesquisa do Rio Grande do Sul (FAPERGS- Processo 33416.465.34568.26032018), and PROPG/UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Bainy Leal.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2021_3237_MOESM1_ESM.tif

Figure S1. HPLC chromatogram of the Sintocalmy methanolic extract (SME). 4: isoschaftoside, 5: isoorientin, 6: orientin, 7: schaftoside, 10: saponarin, 11: vitexin and 12: isovitexin, previously published [44]. (TIF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis Izolan, L., da Silva, D.M., Oliveira, H.B.L. et al. Sintocalmy, a Passiflora incarnata Based Herbal, Attenuates Morphine Withdrawal in Mice. Neurochem Res 46, 1092–1100 (2021). https://doi.org/10.1007/s11064-021-03237-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03237-w

Keywords

Navigation