Log in

Necrostatin-1 Mitigates Endoplasmic Reticulum Stress After Spinal Cord Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Necrostatin-1 (Nec-1) has been shown to inhibit necroptosis and convey a significant protective effect after spinal cord injury (SCI). This small molecule inhibitor may reduce tissue damage and restore neurological function by lessening mitochondrial injury after SCI and preserving energy homeostasis. However, the effects of Nec-1 on endoplasmic reticulum stress (ERS)—an important pathological consequence of SCI—are still not clear. The present study investigates the relationship between necroptosis and ERS in a rat model of SCI. Electron microscopy was employed to observe ultra-structural changes in the endoplasmic reticulum and mitochondria after lesioning. Real-time quantitative PCR was used to measure the mRNA levels of ERS-related pro-apoptotic molecules such as C/EBP homologous protein (CHOP), immunoglobulin-binding protein (BiP/GRP78) and X box-binding protein-1 (XBP-1). Western blot and immunofluorescence were conducted to analyze CHOP, GRP78 and XBP-1 protein expression after lesioning. Results demonstrated that applying Nec-1 in SCI reduces ultra-structural damage to the endoplasmic reticulum and mitochondria and inhibits expression of ERS-related genes and proteins after lesioning. Immunofluorescence also shows ERS-related proteins mainly expressed in the cytoplasm of nerve cells. Taken together, these results demonstrate that Nec-1 has protective effect on the endoplasmic reticulum and mitochondria and alleviates ERS after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17(10):915–925

    Article  CAS  PubMed  Google Scholar 

  2. Kanno H, Ozawa H, Tateda S, Yahata K, Itoi E (2015) Upregulation of the receptor-interacting protein 3 expression and involvement in neural tissue damage after spinal cord injury in mice. BMC Neurosci 16:62

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li JS, Zhang W, Kang ZM, Ding SJ, Liu WW, Zhang JH, Guan YT, Sun XJ (2009) Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience 159(4):1309–1315

    Article  CAS  PubMed  Google Scholar 

  4. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24(9):2182–2190

    Article  CAS  PubMed  Google Scholar 

  5. Cho YS (2014) Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis. Int J Mol Med 33(6):1401–1406

    Article  CAS  PubMed  Google Scholar 

  6. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM (2013) Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant 13(11):2797–2804

    Article  CAS  PubMed  Google Scholar 

  7. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ (2012) Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 219(6):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. You ZR, Savitz SI, Yang JS, Degterev A, Yuan JY, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li S, Yang L, Selzer ME, Hu Y (2013) Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 74(6):768–777

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73(11–12):2153–2163

    Article  CAS  PubMed  Google Scholar 

  12. Fan H, Zhang K, Shan L, Kuang F, Chen K, Zhu K, Ma H, Ju G, Wang YZ (2016) Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Mol Neurodegener 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB (2014) Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol 112:50–69

    Article  CAS  PubMed  Google Scholar 

  14. Penas C, Guzman MS, Verdu E, Fores J, Navarro X, Casas C (2007) Spinal cord injury induces endoplasmic reticulum stress with different cell-type dependent response. J Neurochem 102(4):1242–1255

    Article  CAS  PubMed  Google Scholar 

  15. Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol 54(4):795–809

    Article  CAS  PubMed  Google Scholar 

  16. Fan H, Tang HB, Kang J, Shan L, Song H, Zhu K, Wang J, Ju G, Wang YZ (2015) Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience 311(17):362–373

    Article  CAS  PubMed  Google Scholar 

  17. Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD (2015) Necroptosis interfaces with MOMP and the MPTP in mediating cell death. PloS One 10(6):e0130520

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu X, Sun C (2010) Ultrasound enhanced skin optical clearing: microstructural changes. J Innov Optic Health Sci 03(03):189–194

    Article  Google Scholar 

  19. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  CAS  PubMed  Google Scholar 

  20. Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH (2015) Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med 38(6):745–753

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X (2014) Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 266:91–101

    Article  CAS  PubMed  Google Scholar 

  22. Zhang E, Yi MH, Shin N, Baek H, Kim S, Kim E, Kwon K, Lee S, Kim HW, Chul Bae Y, Kim Y, Kwon OY, Lee WH, Kim DW (2015) Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model. Sci Rep 5:11555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Penas C, Guzmán MS, Verdú E, Forés J, Navarro X, Casas C (2007) Spinal cord injury induces endoplasmic reticulum stresswith different cell-type dependent response and Caty Casas. J Neurochem 102:1242–1255

    Article  CAS  PubMed  Google Scholar 

  24. Lin Z, Hu Y, Wang Z, Pan S, Zhang H, Ye L, Zhang H, Fang M, Jiang H, Ye J, **ao J (2017) Intranasal basic fbroblast growth factor attenuatesendoplasmic reticulum stress and brain injuryin neonatal hypoxic-ischaemic injury. Am J Transl Res 9(2):275–288

    PubMed  PubMed Central  Google Scholar 

  25. Ma YM, Peng YM, Zhu QH, Gao AH, Chao B, He QJ, Li J, Hu YH, Zhou YB (2016) Novel CHOP activator LGH00168 induces ecroptosis in A549 human lung cancer cells via ROS-mediated ER tress and NF-κB inhibition. Acta Pharmacol Sin 37(10):1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coustry F, Posey KL, Liu P, Alcorn JL, Hecht JT (2012) D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. Am J Pathol 180(2):738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuyama D, Watanabe M, Suyama K, Kuroiwa M, Mochida J (2014) Endoplasmic reticulum stress response in the rat contusivespinal cord injury model-susceptibility in specific cell types. Spinal Cord 52(1):9–16

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Wang J, Yang H, Zhou J, Feng X, Wang H, Tao Y (2015) Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (ZZ2016J22) and Multi-disciplinary joint research of the Affiliated Southeast Hospital of **amen University (14YLG001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lin.

Additional information

Shuang Wang and ** Wu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, J., Zeng, YZ. et al. Necrostatin-1 Mitigates Endoplasmic Reticulum Stress After Spinal Cord Injury. Neurochem Res 42, 3548–3558 (2017). https://doi.org/10.1007/s11064-017-2402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2402-x

Keywords

Navigation