Log in

Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Modi AC, Ingerski LM, Rausch JR, Glauser TA, Drotar D (2012) White coat adherence over the first year of therapy in pediatric epilepsy. J Pediatr 161(4):695–699. doi:10.1016/j.jpeds.2012.03.059

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eddy CM, Rickards HE, Cavanna AE (2011) The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord 4(6):385–407. doi:10.1177/1756285611417920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Council NANDaSN (2015) Anticonvulsant Screening Program Report.

  4. Barker-Haliski M, White HS (2015) Antiepileptic drug development and experimental models. In: Wyllie E, Gidal BE, Goodkin HP (eds) Wyllie’s treatment of epilepsy. 6th edn. Lippencott, Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Putnam TJ, Merritt HH (1937) Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85(2213):525–526. doi:10.1126/science.85.2213.525

    Article  CAS  PubMed  Google Scholar 

  6. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–227

    Article  CAS  PubMed  Google Scholar 

  7. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21. doi:10.1016/j.expneurol.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  8. Rowley NM, White HS (2010) Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res 92(2–3):163–169

    Article  CAS  PubMed  Google Scholar 

  9. Matagne A, Klitgaard H (1998) Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res 31(1):59–71 pii]

    Article  CAS  PubMed  Google Scholar 

  10. Loewen JL, Barker-Haliski ML, Dahle EJ, White HS, Wilcox KS (2016) Neuronal injury, gliosis, and glial proliferation in two models of temporal lobe epilepsy. J Neuropathol Exp Neurol. doi:10.1093/jnen/nlw008

    PubMed  PubMed Central  Google Scholar 

  11. Barker-Haliski ML, Vanegas F, Mau MJ, Underwood TK, White HS (2016) Acute cognitive impact of antiseizure drugs in naive rodents and corneal-kindled mice. Epilepsia 57(9):1386–1397. doi:10.1111/epi.13476

    Article  CAS  PubMed  Google Scholar 

  12. Rogawski MA (2006) Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 69(3):273–294. doi:10.1016/j.eplepsyres.2006.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leclercq K, Matagne A, Kaminski RM (2014) Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model. Epilepsy Res 108(4):675–683. doi:10.1016/j.eplepsyres.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Smith MD, Adams AC, Saunders GW, White HS, Wilcox KS (2007) Phenytoin- and carbamazepine-resistant spontaneous bursting in rat entorhinal cortex is blocked by retigabine in vitro. Epilepsy Res 74(2–3):97–106. doi:10.1016/j.eplepsyres.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki F, Junier MP, Guilhem D, Sorensen JC, Onteniente B (1995) Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience 64(3):665–674

    Article  CAS  PubMed  Google Scholar 

  16. Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89(3):717–729

    Article  CAS  PubMed  Google Scholar 

  17. Riban V, Bouilleret V, Pham-Le BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112(1):101–111

    Article  CAS  PubMed  Google Scholar 

  18. Duveau V, Pouyatos B, Bressand K, Bouyssieres C, Chabrol T, Roche Y, Depaulis A, Roucard C (2016) Differential effects of antiepileptic drugs on focal seizures in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci Ther 22(6):497–506. doi:10.1111/cns.12523

    Article  CAS  PubMed  Google Scholar 

  19. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A (2011) Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8(2):304–315. doi:10.1007/s13311-011-0039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2013) Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 103(1):2–30. doi:10.1016/j.eplepsyres.2012.10.001

    Article  PubMed  Google Scholar 

  21. Loscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258

    Article  CAS  PubMed  Google Scholar 

  22. White HS (2003) Preclinical development of antiepileptic drugs: past, present, and future directions. Epilepsia 44(Suppl 7):2–8

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava AK, White HS (2013) Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats. Epilepsy Res 104(1–2):26–34. doi:10.1016/j.eplepsyres.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava AK, Alex AB, Wilcox KS, White HS (2013) Rapid loss of efficacy to the antiseizure drugs lamotrigine and carbamazepine: a novel experimental model of pharmacoresistant epilepsy. Epilepsia 54(7):1186–1194. doi:10.1111/epi.12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31(1):73–84

    Article  CAS  PubMed  Google Scholar 

  26. Thomson KE, Modi A, Glauser TA, White HS (2017) The impact of nonadherence to antiseizure drugs on seizure outcomes in an animal model of epilepsy. Epilepsia In Press, New York

  27. Orban G, Bombardi C, Marino Gammazza A, Colangeli R, Pierucci M, Pomara C, Pessia M, Bucchieri F, Benigno A, Smolders I, De Deurwaerdere P, Di Giovanni G (2014) Role(s) of the 5-HT2C receptor in the development of maximal dentate activation in the hippocampus of anesthetized rats. CNS Neurosci Ther 20(7):651–661. doi:10.1111/cns.12285

    Article  CAS  PubMed  Google Scholar 

  28. Hamid H, Kanner AM (2013) Should antidepressant drugs of the selective serotonin reuptake inhibitor family be tested as antiepileptic drugs?. Epilepsy Behav 26 (3):261–265. doi:10.1016/j.yebeh.2012.10.009

    Article  PubMed  Google Scholar 

  29. Boison D (2012) Adenosine dysfunction in epilepsy. Glia 60(8):1234–1243. doi:10.1002/glia.22285

    Article  PubMed  Google Scholar 

  30. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2017) Progress report on new antiepileptic drugs: a summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 58(2):181–221. doi:10.1111/epi.13634

    Article  PubMed  Google Scholar 

  31. Bialer M, Twyman RE, White HS (2004) Correlation analysis between anticonvulsant ED50 values of antiepileptic drugs in mice and rats and their therapeutic doses and plasma levels. Epilepsy Behav 5 (6):866–872

    Article  PubMed  Google Scholar 

  32. Finney DJ (1952) Probit analysis. A statistical treatment of the sigmoid response curve. University Press, Cambridge

    Google Scholar 

  33. Swinyard EA, Woodhead JH, White HS, Franklin MR (1989) General principles: experimental selection, quantification, and evaluation of anticonvulsants. In: Levy RHM RH, Melrum B, Penry JK, Dreifuss FE (eds) Antiepileptic drugs. 3rd edn. Raven Press, New York, pp 85–102

    Google Scholar 

  34. White HS, Woodhead JH, Franklin MR (1995) General principles: experimental selection, quantification, and evaluation of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic Drugs. 4th edn. Raven Press, New York, pp 99–110

    Google Scholar 

  35. White HS, Johnson M, Wolf HH, Kupferberg HJ (1995) The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital J Neurol Sci 16(1–2):73–77

    Article  CAS  PubMed  Google Scholar 

  36. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  37. Dunham MS, Miya TA (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Amer Pharm Ass Sci Ed 46:208–209

    Article  CAS  Google Scholar 

  38. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  39. Scharfman HE (1997) Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. J Neurophysiol 78(2):1082–1095

    CAS  PubMed  Google Scholar 

  40. Barker-Haliski ML, Heck TD, Dahle EJ, Vanegas F, Pruess TH, Wilcox KS, White HS (2016) Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 57(12):1958–1967

    Article  Google Scholar 

  41. Barker-Haliski ML, Dahle EJ, Heck TD, Pruess TH, Vanegas F, Wilcox KS, White HS (2015) Evaluating an etiologically-relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the theiler’s murine encephalomyelitis virus mouse model. J Pharmacol Exp Ther. doi:10.1124/jpet.114.222513

    PubMed  PubMed Central  Google Scholar 

  42. Thomson KE, White HS (2014) A novel open-source drug-delivery system that allows for first-of-kind simulation of nonadherence to pharmacological interventions in animal disease models. J Neurosci Methods. doi:10.1016/j.jneumeth.2014.09.019

    PubMed  PubMed Central  Google Scholar 

  43. Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA (1997) Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J Neurosci 17(2):607–614

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McGill MR, Williams CD, **e Y, Ramachandran A, Jaeschke H (2012) Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 264(3):387–394. doi:10.1016/j.taap.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boison D (2016) The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front Mol Neurosci 9:26. doi:10.3389/fnmol.2016.00026

    Article  PubMed  PubMed Central  Google Scholar 

  46. Janusz W, Kleinrok Z (1989) The role of the central serotonergic system in pilocarpine-induced seizures: receptor mechanisms. Neurosci Res 7(2):144–153

    Article  CAS  PubMed  Google Scholar 

  47. Grabenstatter HL, Ferraro DJ, Williams PA, Chapman PL, Dudek FE (2005) Use of chronic epilepsy models in antiepileptic drug discovery: the effect of topiramate on spontaneous motor seizures in rats with kainate-induced epilepsy. Epilepsia 46(1):8–14. doi:10.1111/j.0013-9580.2005.13404.x

    Article  CAS  PubMed  Google Scholar 

  48. Matagne A, Margineanu DG, Kenda B, Michel P, Klitgaard H (2008) Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol 154(8):1662–1671. doi:10.1038/bjp.2008.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tosh DK, Paoletta S, Deflorian F, Phan K, Moss SM, Gao ZG, Jiang X, Jacobson KA (2012) Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 55(18):8075–8090. doi:10.1021/jm300965a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D (2014) Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J Neurosurg 120(3):628–638. doi:10.3171/2013.10.JNS13918

    Article  CAS  PubMed  Google Scholar 

  51. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624. doi:10.1002/ana.410320504

    Article  CAS  PubMed  Google Scholar 

  52. Borowicz KK, Piskorska B, Stepniak B, Czuczwar SJ (2012) Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann Agric Environ Med 19(3):487–490

    CAS  PubMed  Google Scholar 

  53. Borowicz KK, Stepien K, Czuczwar SJ (2006) Fluoxetine enhances the anticonvulsant effects of conventional antiepileptic drugs in maximal electroshock seizures in mice. Pharmacol Rep 58(1):83–90

    CAS  PubMed  Google Scholar 

  54. Deshpande LS, DeLorenzo RJ (2011) Acetaminophen inhibits status epilepticus in cultured hippocampal neurons. Neuroreport 22(1):15–18. doi:10.1097/WNR.0b013e3283413231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Cameron Metcalf, University of Utah, and Dr. Shamsi Raessi, NINDS Epilepsy Therapy Screening Program, for helpful discussions and data retrieval. The authors also gratefully acknowledge the assistance of Dr. John Kehne and Dr. Brian Klein, NINDS Epilepsy Therapy Screening Program, for helpful discussions and invaluable review of initial drafts of this manuscript. This work was supported by the National Institute of Neurological Disorder and Stroke’s Epilepsy Therapy Screening Program contract HHSN 271201100029 C to H. Steve White. In December 2015, the contract HHSN 271201100029 C was transferred to KSW. Lastly, the authors acknowledge the intellectual and scientific contributions of Dr. H. Steve White to the conception and implementation of the initial phases of this revised testing flow chart. While not listed as an author, this work would not have been completed without Dr. White’s input and scientific guidance developed through numerous years of experience with the NINDS Epilepsy Therapy Screening Program. This manuscript is submitted as a contribution to a special issue of Neurochemical Research in honor of Dr. White’s career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa L. Barker-Haliski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker-Haliski, M.L., Johnson, K., Billingsley, P. et al. Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy. Neurochem Res 42, 1904–1918 (2017). https://doi.org/10.1007/s11064-017-2227-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2227-7

Keywords

Navigation