Log in

Revision of the Classical Dopamine D2 Agonist Pharmacophore Based on an Integrated Medicinal Chemistry, Homology Modelling and Computational Docking Approach

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The scientific advances during the 1970ies and 1980ies within the field of dopaminergic neurotransmission enabled the development of a pharmacophore that became the template for design and synthesis of dopamine D2 agonists during the following four decades. A major drawback, however, is that this model fails to accommodate certain classes of restrained dopamine D2 agonists including ergoline structures. To accommodate these, a revision of the original model was required. The present study has addressed this by an extension of the original model without compromising its obvious qualities. The revised pharmacophore contains an additional hydrogen bond donor feature, which is required for it to accommodate ergoline structures in a low energy conformation and in accordance with the steric restrictions dictated by the original model. The additional pharmacophore feature suggests ambiguity in the binding mode for certain compounds, including a series of ergoline analogues, which was reported recently. The ambiguity was confirmed by docking to a homology model of the D2 receptor as well as by pharmacological characterization of individual enantiomers of one of the analogues. The present research also addresses the potential of designing ligands that interact with the receptor in a large, distal cavity of the dopamine D2 receptor that has not previously been studied systematically. The pharmacological data indicate that this area may be a major determinant for both the dopamine D2 affinity and efficacy, which remains to be explored in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  2. Ehringer H, Hornykiewicz O (1960) Distribution of noradrenaline and dopamine (3-Hydroxytryamine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr. 38:1236–1239

    Article  PubMed  CAS  Google Scholar 

  3. Snyder SH, Taylor KM, Coyle JT, Meyerhoff JL (1970) The role of brain dopamine in behavioral regulation and the actions of psychotropic drugs. Am J Psychiatry 127:199–207

    PubMed  CAS  Google Scholar 

  4. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  5. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsycotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  PubMed  CAS  Google Scholar 

  6. Carlsson A (2001) A paradigm shift in brain research. Science 294:1021–1024

    Article  PubMed  CAS  Google Scholar 

  7. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  8. Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193

    Article  PubMed  CAS  Google Scholar 

  9. Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ, Castellanos FX, Wadhwa PD (2007) Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17:39–59

    Article  PubMed  Google Scholar 

  10. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  PubMed  CAS  Google Scholar 

  11. Mink JW (2006) Neurobiology of basal ganglia and tourette syndrome: basal ganglia circuits and thalamocortical outputs. Adv Neurol 99:89–98

    PubMed  Google Scholar 

  12. Jakel RJ, Maragos WF (2000) Neuronal cell death in huntington’s disease: a potential role for dopamine. Trends Neurosci 23:239–245

    Article  PubMed  CAS  Google Scholar 

  13. Cyr M, Sotnikova TD, Gainetdinov RR, Caron MG (2006) Dopamine enhances motor and neuropathological consequences of polyglutamine expanded Huntingtin. Faseb J 20:2541–2543

    Article  PubMed  CAS  Google Scholar 

  14. Strange PG (1992) Brain biochemistry and brain disorders. Oxford University Press, Oxford

    Google Scholar 

  15. Cools AR, Van Rossum JM (1976) Exicitation-mediating and inhibition-mediating dopamine-receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia 45:243–254

    Article  PubMed  CAS  Google Scholar 

  16. Spano PF, Govoni S, Trabucchi M (1978) Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol 19:155–165

    PubMed  CAS  Google Scholar 

  17. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  18. Sibley DR, Monsma FJ (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    Article  PubMed  CAS  Google Scholar 

  19. Jarvie KR, Caron MG (1993) Heterogeneity of dopamine receptors. Adv Neurol 60:325–333

    PubMed  CAS  Google Scholar 

  20. Strange PG (1996) Dopamine receptors: studies on their structure and function. Adv Drug Res 28:315–319

    Google Scholar 

  21. Sokoloff P, Giros B, Martres MP, Barthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D-3) as a target for neuroleptics. Nature 347:146–151

    Article  PubMed  CAS  Google Scholar 

  22. Van Tol HHM, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  23. Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    Article  PubMed  CAS  Google Scholar 

  24. Brown DA, Kharkar PS, Parrington I, Reith MEA, Dutta AK (2008) Structurally constrained hybrid derivatives containing octahydrobenzo [g or f] quinolone moieties for dopamine D2 and D3 receptors: binding characterisation at D2/D3 receptors and elucidation of a pharmacophore model. J Med Chem 51:7806–7819

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. McDermed JD, McKenzie GM, Freeman HS (1976) Synthesis and dopaminergic activity of (±)-, (+)-, and (−)-2-dipropylamino-5-hydroxy-1,2,3,4-tetrahydronaphthalene. J Med Chem 19:547–549

    Article  PubMed  CAS  Google Scholar 

  26. Tedesco JL, Seeman P, McDermed JD (1979) The conformation of dopamine at its receptor: binding of monohydroxy-2-aminotetralin enantiomers and positional isomers. Mol Pharmacol 16:369–381

    PubMed  CAS  Google Scholar 

  27. Cannon JG, Lee T, Goldman HD, Costall B, Naylor RJ (1977) Cerebral dopamine agonist properties of some 2-aminotetralin derivatives after peripheral and intracerebral administration. J Med Chem 20:1111–1116

    Article  PubMed  CAS  Google Scholar 

  28. McDermed JD, McKenzie GM, Phillips AP (1975) Synthesis and pharmacology of some 2-aminotetralins. Dopamine receptor agonists. J Med Chem 18:362–367

    Article  PubMed  CAS  Google Scholar 

  29. Hacksell U, Svensson U, Nilsson JLG, Hjorth S, Carlsson A, Wikström H, Lindberg P, Sanchez D (1979) N-alkylated 2-aminotetralins: central dopamine-receptor stimulating activity. J Med Chem 22:1469–1475

    Article  PubMed  CAS  Google Scholar 

  30. Caprathe BW, Jaen JC, Wise LD, Heffner TG, Pugsley TA, Meltzer LT, Pervez M (1991) Dopamine autoreceptor agonists as potential antipsychotics. 3. 6-Propyl-4,5,5a,6,7,8-hexahydrothiazolo [4,5-f]quinolin-2-amine. J Med Chem 34:2736–2746

    Article  PubMed  CAS  Google Scholar 

  31. Mewshaw RE, Kavanagh J, Stack G, Marquis KL, Shi X, Kagan MZ, Webb MB, Katz AH, Park A, Kang YH, Abou-Gharbia M, Scerni R, Wasik T, Cortes-Burgos L, Spangler T, Brennan JA, Piesla M, Mazandarani H, Cockett MI, Ochalski R, Coupet J, Andree TH (1997) New generation dopaminergic agents. 1. Discovery of a novel scaffold which embraces the D2 agonist pharmacophore. structure-activity relationships of a series of 2-(Aminomethyl)chromans. J Med Chem 40:4235–4256

    Article  PubMed  CAS  Google Scholar 

  32. Mewshaw RE, Verwijs A, Shi X, McGaughey GB, Nelson JA, Mazandarani H, Brennan JA, Marquis KL, Coupet J, Andree TH (1998) New generation dopaminergic agents. 5. Heterocyclic bioisosters that exploit the 3-OH-N1-Phenypiperazine dopaminergic template. Bioorg Med Chem Lett 8:2675–2680

    Article  PubMed  CAS  Google Scholar 

  33. Jain ZJ, Kankate RS, Chaudhari BN, Kakad RD (2013) Action of benzimidazolo-piperazinyl derivatives on dopamine receptors. Med Chem Res 22:520–530

    Article  CAS  Google Scholar 

  34. Wikström H, Liljefors T (1986) A molecular mechanics approach to the understanding of presynaptic selectivity for centrally acting dopamine receptor agonists of the phenylpiperidine series. J Med Chem 29:1896–1904

    Article  PubMed  Google Scholar 

  35. Liljefors T, Bøgesø KP, Hyttel J, Wikström H, Svensson K, Carlsson A (1990) Pre- and postsynaptic dopaminergic activities of indolizidine and quinolizidine derivatives of 3-(3-Hydroxyphenyl)-N-(n-propyl)piperidine (3-PPP). further developments of a dopamine receptor model. J Med Chem 33:1015–1022

    Article  PubMed  CAS  Google Scholar 

  36. Sanjib G, Biswas S, Modi G, Antonio T, Reith MEA, Dutta AK (2012) Novel bivalent ligands for D2/D3 dopamine receptors: significant cooperative gain in D2 affinity and potency. Med Chem Lett 3:991–996

    Article  Google Scholar 

  37. Audinot V, Newman-Tancredi A, Gobert A, Rivet J-M, Brocco M, Lejeune F, Gluck L, Desposte I, Bervoets K, Dekeyne A, Millan MJ (1998) A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, Nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 287:187–197

    PubMed  CAS  Google Scholar 

  38. Wikström H, Anderson B, Elebring T, Svensson K, Carlsson A, Largent B (1987) N-substituted 1,2,3,4,4a,5,6,10b-Octahydrobenzo[f]quinolones and 3-phenylpiperidines: effects on central dopamine and a receptors. J Med Chem 30:2169–2174

    Article  PubMed  Google Scholar 

  39. Martin GE, Williams M, Pettibone DJ, Yarbrough GG, Clineschmidt BV, Jones JH (1984) Pharmacological profile of a novel potent direct-acting dopamine agonist, (+)-4-Propyl-9-hydroxynaphthoxazine [(+)-PHNO]. J Pharmacol Exp Ther 230:569–576

    PubMed  CAS  Google Scholar 

  40. Heier RF, Dolak LA, Duncan JN, Hyslop DK, Lipton MF, Martin IJ, Mauragis MA, Piercey MF, Nichols NF, Schreur PJKD, Smith MW, Moon MW (1997) Synthesis and biological activities of (R)-5,6-Dihydro-N, N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine and its metabolites. J Med Chem 40:639–646

    Article  PubMed  Google Scholar 

  41. Malo M, Brive L, Luthman K, Svensson P (2010) Selective pharmacophore models of dopamine D1 and D2 full agonists based on extended pharmacophore features. ChemMedChem 5:232–246

    Article  PubMed  CAS  Google Scholar 

  42. Bøgesø KP, Arnt J, Lundmark M, Sundell S (1987) Indolizidine and quinolizidine derivatives of the dopamine autoreceptor agonist 3-(3-Hydroxyphenyl)-N-n-propylpiperidine (3-PPP). J Med Chem 30:142–150

    Article  PubMed  Google Scholar 

  43. Larson BT, Harmon DL, Piper EL, Griffis LM, Bush LP (1999) Alkaloid binding and activation of D2 dopamine receptors in cell culture. J Anim Sci 77:942–947

    PubMed  CAS  Google Scholar 

  44. Herm L, Berényi S, Vonk A, Rinken A, Sipos A (2009) N-substituted-2-alkyl- and 2-arylnorapomorphines: novel, highly active D2 agonists. Bioorg Med Chem 17:4756–4762

    Article  PubMed  CAS  Google Scholar 

  45. Mottola DM, Brewster WK, Cook LL, Nichols DE, Mailman RB (1992) Dihydrexidine, a novel full efficacy D1 dopamine receptor agonist. J Pharmacol Exp Ther 262:383–393

    PubMed  CAS  Google Scholar 

  46. Novi F, Millan MJ, Corsini GU, Maggio R (2007) Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D2L receptors are modified by co-transfection of D3 receptors: potential role of heterodimer formation. J Neurochem 102:1410–1424

    Article  PubMed  CAS  Google Scholar 

  47. Newman-Tancredi A, Cussac D, Audinot V, Nicolas JP, De Ceuninck F, Boutin JA, Millan MJ (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D(2)-like receptor and alpha(1)/alpha(2)-adrenoceptor. J Pharmacol Exp Ther 303:805–814

    Article  PubMed  CAS  Google Scholar 

  48. Cosi C, Carilla-Durand E, Assié MB, Ormiere AM, Maraval M, Leduc N, Newman-Tancredi A (2006) Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 535:135–144

    Article  PubMed  CAS  Google Scholar 

  49. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang X-P, Vardy E, McCorvy JD, Gao X, Zhou E, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. The PyMOL Molecular Graphics System, Version 1.5.0, Schrödinger LLC, New York, NY, 2013

  52. Krogsgaard-Larsen N, Begtrup M, Frydenvang K, Kehler J (2010) Syntheses of aza-analogous iso-ergoline scaffolds using carbene mediated C-H insertion. Tetrahedron 66:9297–9303

    Article  CAS  Google Scholar 

  53. Krogsgaard-Larsen N, Jensen AA, Schrøder TJ, Christoffersen CT, Kehler J (2014) Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands. J Med Chem. doi:10.1021/jm5003759

  54. Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165:1688–1703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilkal BK (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579

    Article  PubMed  CAS  Google Scholar 

  56. Rasmussen SGF, Choi H-J, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellamn SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. UniProt Consortium (2010) Ongoing and future developments at the universal protein resource. Nucleic Acids Res 39:D214–D219

    Article  Google Scholar 

  58. Ballesteros J, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  59. Maestro, version 9.6, Schrödinger, LLC, New York, NY, 2013

  60. MacroModel, version 10.2, Schrödinger, LLC, New York, NY, 2013

  61. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  62. Berman HM, Weatbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  64. Tfelt-Hansen P, Saxena PR, Dahlöf C, Pascual J, Láinez M, Henry P, Diener H, Schoenen J, Ferrari MD, Goadsby PJ (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123:9–18

    Article  PubMed  Google Scholar 

  65. Protein Preparation Wizard 2013-3, Schrödinger, LLC, New York, NY, 2013; Epik version 2.4; Impact version 5.9; Prime version 3.2

  66. Glide, version 6.1, Schrödinger, LLC, New York, NY, 2013

  67. Boström J, Norrby PO, Liljefors T (1998) Conformational energy penalties of protein-bound ligands. J Comput Aided Mol Des 12:383–396

Download references

Acknowledgments

The chemistry described was conducted at H. Lundbeck A/S. We gratefully acknowledge the research facilities and materials provided by H. Lundbeck A/S and Department of Drug Design and Pharmacology, The Faculty of Health and Medical Sciences, The University of Copenhagen. Niels Krogsgaard-Larsen was supported by a DRA PhD scholarship provided by the Faculty of Health and Medical Sciences, The University of Copenhagen in collaboration with H. Lundbeck A/S.

Conflict of interest

The Authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Balle.

Additional information

Special Issue: In honor of Krogsgaard-Larsen.

N. Krogsgaard-Larsen and K. Harpsøe have contributed equally to this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krogsgaard-Larsen, N., Harpsøe, K., Kehler, J. et al. Revision of the Classical Dopamine D2 Agonist Pharmacophore Based on an Integrated Medicinal Chemistry, Homology Modelling and Computational Docking Approach. Neurochem Res 39, 1997–2007 (2014). https://doi.org/10.1007/s11064-014-1314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1314-2

Keywords

Navigation