Log in

Partial Inhibition of Na+/K+-ATPase and Plasma Membrane Ca2+-ATPase from the Rat Cerebral Cortex by S-Nitrosoglutathione

  • Published:
Neurophysiology Aims and scope

S-nitrosoglutathione (GSNO) is an endogenous S-nitrosylated glutathione derivative (GSH) involved in NO signaling. GSNO acts as a carrier of nitrosyl groups to cysteine (both free amino acid and its residues in proteins), a glutathionylation agent, and an NO donor. We investigated the effects of GSNO, GSH, and oxidized glutathione (GSSG) on the activity of two main ion pumps of the plasma membrane, Na+/K+-ATPase (NKA) and plasma membrane Ca2+-ATPase (PMCA). Plasma membranes were obtained from the rat cerebral cortex by differential centrifugation. Preincubation of the saponinpermeabilized plasma membranes at 37°C (but not at 0°C) with various concentrations of GSNO led to partial inhibition of ATPase activities of NKA and PMCA (on average, by 19.4 ± 2.2 and 42.1 ± 3% at 10 mM GSNO, respectively). The addition of GSH instead of GSNO did not affect the enzyme activities, while GSSG inhibited these enzymes much weaker than GSNO. The inhibited enzyme activities after the action of GSNO were partially restored after incubation of the membranes with a thiol-reducing agent, 2-mercaptoethanol. GSNO-dependent inhibition of NKA was not observed in the presence of ouabain (>1.0 μM), when only isozymes having an α1-subunit were active. GSNO inhibited both high- and lowsensitive to Ca2+ (calmodulin-dependent and calmodulin-independent) PMCA activities by 51 and 33%, respectively, with no changes in Km for Ca2+. It is assumed that GSNO or its degradation product(s), by modifying the thiol groups in NKA and PMCA molecules, partly inhibit their activity. Only NKA isozymes with α2 and α3 subunits, which are highly sensitive to ouabain, are likely to manifest such sensitivity. Inhibition of PMCA is not associated with a change in its sensitivity to Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Broniowska, A. R. Diers, and N. Hogg, “S-nitrosoglutathione,” Biochim. Biophys. Acta, 1830, No. 5, 3173–3181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. B. Smith and M. A. Marletta, “Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling,” Curr. Opin. Chem. Biol., 16, Nos. 5-6, 498–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Furuta, “Basal S-nitrosylation is the guardian of tissue homeostasis,” Trends Cancer, 3, No. 11, 744–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. A. Martínez-Ruiz and S. Lamas, “Signalling by NOinduced protein S-nitrosylation and S-glutathionylation: convergences and divergences,” Cardiovasc. Res., 75, No. 2, 220–228 (2007).

    Article  PubMed  Google Scholar 

  5. J. W. Park, “Reaction of S-nitrosoglutathione with sulfhydryl groups in protein,” Biochem. Biophys. Res. Commun., 152, No. 2, 916–920 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. M. S. Choi, “Pathophysiological role of S-nitrosylation and transnitrosylation depending on S-nitrosoglutathione levels regulated by S-nitrosoglutathione reductase,” Biomol. Ther. (Seoul), 26, No. 6, 533–538 (2018).

    Article  CAS  Google Scholar 

  7. H. Zeng, N. Y. Spencer, and N. Hogg, “Metabolism of S-nitrosoglutathione by endothelial cells,” Am. J. Physiol. Heart Circ. Physiol., 281, No. 1, H432–H439 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. I. Hornyák, E. Pankotai, L. Kiss, and Z. Lacza, “Current developments in the therapeutic potential of S-nitrosoglutathione, an endogenous NO-donor molecule,” Curr. Pharm. Biotechnol., 12, No. 9, 1368–1374 (2011).

    Article  PubMed  Google Scholar 

  9. P. Rauhala, T. Andoh, and C. C. Chiueh, “Neuroprotective properties of nitric oxide and S-nitrosoglutathione,” Toxicol. Appl. Pharmacol., 207, Suppl. 2, 91–95 (2005).

  10. J. He, H. Kang, F. Yan, and C. Chen, “The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells,” Brain Res., 1015, Nos. 1-2, 25–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. G. Blanco and R. W. Mercer, “Isozymes of the Na-KATPase: heterogeneity in structure, diversity in function,” Am. J. Physiol., 275, No. 5, F633–F650 (1998).

    CAS  PubMed  Google Scholar 

  12. E. Carafoli, “Calcium pump of the plasma membrane,” Physiol. Rev., 71, No. 1, 129–153 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. M. Brini, T. Calì, D. Ottolini, and E. Carafoli, “The plasma membrane calcium pump in health and disease,” FEBS J., 280, No. 21, 5385–5397 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. K. M. Chan, D. Delfert, and K. D. Junger, “A direct colorimetric assay for Ca2+-stimulated ATPase activity,” Anal. Biochem., 157, No. 2, 375–380 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. A. G. Splittgerber and J. Sohl, “Nonlinearity in protein assays by the Coomassie blue dye-binding method,” Anal. Biochem., 179, No. 2, 198–201 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. J. Yan, Q. Shi, Z. Chen, et al., “Skeletal muscle aldolase an overexpression in endotoxemic rats and inhibited by GSNO via potential role for S-nitrosylation in vitro,” J. Surg. Res., 170, No. 1, e57–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. L. Nogueira, C. Figueiredo-Freitas, G. Casimiro-Lopes, et al., “Myosin is reversibly inhibited by S-nitrosylation,” Biochem. J., 424, No. 2, 221–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. J. Sun, N. Yamaguchi, L. Xu, et al., “Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione,” Biochemistry, 47, No. 52, 13985–13990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. R. Kapadia, J. W. Eng, Q. Jiang, et al., “Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells,” Nitric Oxide, 20, No. 4, 279–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. D. Giustarini, A. Milzani, G. Aldini, et al., “S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione,” Antioxid. Redox. Signal., 7, Nos. 7-8, 930–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. I. Y. Petrushanko, S. Yakushev, V. A. Mitkevich, et al., “S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity,” J. Biol. Chem., 287, No. 38, 32195–31205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. C. Liu, K. Karimi Galougahi, R. M. Weisbrod, et al., “Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction,” Free Radic. Biol. Med., 65, 563–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Kunimoto, H. Tsubone, N. Tsujii, et al., “Toxic effects of nitrate and nitrite, chemical intermediates of inhaled nitrogen dioxide, on membrane components of red blood cells of rats.,” Appl. Pharmacol., 74, No. 1, 10–16 (1984).

    Article  CAS  Google Scholar 

  24. I. Mangialavori, M. Ferreira-Gomes, M. F. Pignataro, et al., “Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes,” J. Biol. Chem., 285, No. 1, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. M. Brini, L. Coletto, N. Pierobon, et al., “A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells,” J. Biol. Chem., 278, No. 27, 24500–2458 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. M. Forgac, “The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione,” J. Biol. Chem., 274, No. 3, 1301–1305 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. D. Giustarini, I. Dalle-Donne, A. Milzani, and R. Rossi, “Low molecular mass thiols, disulfides and protein mixed disulfides in rat tissues: influence of sample manipulation, oxidative stress and ageing,” Mech. Ageing Dev., 132, No. 4, 141–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. I. Kluge, U. Gutteck-Amsler, M. Zollinger, and K. Q. Do, “S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry,” J. Neurochem., 69, No. 6, 2599–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. K. Zaman, L. A Palmer, A. Doctor, et al., “Concentrationdependent effects of endogenous S-nitrosoglutathione on gene regulation by specificity proteins Sp3 and Sp1,” Biochem. J., 380, Pt. 1, 67–74 (2004).

  30. L. Tao, and A. M. English, “Mechanism of S-nitrosation of recombinant human brain calbindin D28K,” Biochemistry, 42, No. 11, 3326–3334 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. S. R. Jaffrey, H. Erdjument-Bromage, C. D. Ferris, et al., “Protein S-nitrosylation: a physiological signal for neuronal nitric oxide,” Nat. Cell Biol., 2, 193–197 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tsyvkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyvkin, V.N., Prudnikov, I.M., Smirnov, A.N. et al. Partial Inhibition of Na+/K+-ATPase and Plasma Membrane Ca2+-ATPase from the Rat Cerebral Cortex by S-Nitrosoglutathione. Neurophysiology 52, 178–185 (2020). https://doi.org/10.1007/s11062-020-09868-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09868-z

Keywords

Navigation