Log in

CDC20 with malignant progression and poor prognosis of astrocytoma revealed by analysis on gene expression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The malignant transformation of astrocytoma may result from the accumulation of multiple genetic alterations. Current research shows that diffuse astrocytoma (AIIs, WHO grade II) is inherently predisposed to recur locally, and to spontaneously progress to anaplastic astrocytoma (AAIIIs, WHO grade III) and eventually secondary glioblastoma (sGBMIVs, WHO grade IV). The aim of the study was to identify and validate the important gene(s) associated with malignant progression and poor prognosis of astrocytoma. Average expression levels of 82 samples (35 AIIs, 13 AAIIIs and 34 sGBMIVs) were compared to each other through no-paired student test. Candidate genes were screened by DAVID and Kaplan–Meier survival analysis. Further, the significant candidate genes were validated through real-time PCR(qPCR), western blot and immunohistochemistry (IHC) in different grades of glioma. Finally, the association of target gene and clinical molecular characterization was analyzed by Chi-squared analysis. The cell-division cycle protein 20(CDC20, p = 0.0129) and the polo-like kinase 1(PLK1, p = 0.0046) were screened by statistical and Kaplan–Meier survival analysis. The expression levels of CDC20 and PLK1 rose significantly through real-time PCR(qPCR), western blot and IHC. A chi-squared analysis showed that patients with CDC20 high-expression differ from patients with CDC20 low-expression in terms of WHO classification (p < 0.0001), karnofsky performance score (KPS, p < 0.0001), isocitrate dehydrogenase mutation (IDH1, p < 0.0001), phosphatase and tensin homolog mutation (PTEN, p = 0.027) and epidermal growth factor receptor protein amplification (EGFR, p = 0.048). Moreover, the biological processes analyses indicate CDC20 might have an essential role in astrocyte cell proliferation. We demonstrated that the expression level of CDC20 increases significantly along with malignant progression and poor prognosis of astrocytoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  2. Floris H. Hendrikus J. Cathleen R et al (2011) MGMT promoter hypermethylation is a frequent, early, and consistent event in astrocytoma progression, and not correlated with TP53 mutation. J Neurooncol 101:405–417

    Article  Google Scholar 

  3. Haque A, Banik NL, Ray SK et al (2011) Molecular alterations in glioblastoma: potential targets for immunotherapy. Prog Mol Biol Transl Sci 98:187–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Hu H, Jiang T et al (2014) Multidimensional analysis of gene expression reveals TGFB1I1-induced EMT contributes to malignant progression of astrocytomas. Oncotarget 5(24):12593–12606

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  6. Chang DZ, Ma Y, Ji B, Liu Y et al (2012) Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol 5:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu H (2007) Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 27(1):3–16

    Article  CAS  PubMed  Google Scholar 

  8. Karra H, Repo H, Ahonen I et al (2014) Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer 110:2905–2913. doi:10.1038/bjc.2014.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fry AM, Yamano H (2008) Under arrest in mitosis: Cdc20 dies twice. Nat Cell Biol 10:1385–1387

    Article  CAS  PubMed  Google Scholar 

  10. Ding Z-Y, Wu H-R, Zhang J-M et al (2014) Expression characteristics of CDC20 in gastric cancer and its correlation with poor prognosis. Int J Clin Exp Pathol 7(2):722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang DZ, Ma Y, Ji B, Liu Y, Hwu P, Abbruzzese JL, Logsdon C, Wang H (2012) Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol 5:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M (2012) Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol 106(4):423–430

    Article  CAS  PubMed  Google Scholar 

  13. Bie L, Zhao G, Cheng P, Rondeau G, Porwollik S, Ju Y, **a XQ, McClelland M (2011) The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS ONE 6(10):e25631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28(1):81–92

    Article  CAS  PubMed  Google Scholar 

  15. Wu WJ, Hu KS, Wang DS et al (2013) CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer. J Transl Med 11:142. doi:10.1186/1479-5876-11-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karra H, Repo H, Ahonen I et al (2014) Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer 110(12):2905–2913. doi:10.1038/bjc.2014.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marucci G, Morandi L, Magrini E et al (2008) Gene expression profiling in glioblastoma and immunohistochemical evaluation of IGFBP-2 and CDC20. Virchows Arch 453:599–609

    Article  CAS  PubMed  Google Scholar 

  18. Sunkel CE, Glover DM (1988) Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 89(Pt 1):25–38

    PubMed  Google Scholar 

  19. Liu X, Erikson RL (2003) Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA 100:5789–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strebhardt K (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9(8):643–660

    Article  CAS  PubMed  Google Scholar 

  21. Tandle AT et al (2013) Inhibition of PLK1 in glioblastoma multiforme induces mitotic catastrophe and enhances radiosensitization. Eur J Cancer 49(14):3020–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Yu.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Yu, S., Bao, Z. et al. CDC20 with malignant progression and poor prognosis of astrocytoma revealed by analysis on gene expression. J Neurooncol 133, 87–95 (2017). https://doi.org/10.1007/s11060-017-2434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2434-8

Keywords

Navigation