Log in

β-Amyloid and Lithium Affect the Magnitude of Phasic Dopamine Release in the Shell of the Nucleus Accumbens

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Published data indicate that impairments to dopaminergic secretion in the shell of the nucleus accumbens play a role in the pathogenesis of Alzheimer’s disease (ad). The likely cause is an increase in the toxic form of β-amyloid in the brain. Like other pathogenetic processes in AD, this impairment may be mediated by an increase in glycogen synthase kinase 3 (GSK3) activity. The aim of the present work was to study the effect of β-amyloid on dopamine release in the shell of the nucleus accumbens. Changes in the dopamine level in the shell of the nucleus accumbens were recorded in vivo in 38 anesthetized male Wistar rats by fast scan cyclic voltammetry before and 1.5 h after experimental treatment. The ability of dopaminergic neurons to secrete dopamine was assessed in terms of the amplitude of responses to electrical stimulation of the ventral tegmental area (VTA). Neurotoxic processes typical of AD were modeled by giving β-amyloid (fragment 25–35) solution into the ventricular system of the brain. The role of GSK34 in mediating the effects of β-amyloid were evaluated by blocking the activity of this enzyme with an inhibitor, i.e., lithium. Lithium chloride solution at the “therapeutic” dose of 10.4 mg/kg was given i.p. immediately after β-amyloid injections. Increases in stimulated dopamine release provided evidence that during the 1.5 h after administration of both β-amyloid and lithium, the ability of ventral tegmental area neurons to secret dopamine in the shell of the nucleus accumbens was increased. Furthermore, comparison with the control group showed that these substances countered weakening of the secretory function induced by the experimental conditions. Lithium given simultaneously with β-amyloid weakened its action, evidencing involvement of GSK3 in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baptista, T., Teneúd, L., Contreras, Q., et al., “Effects of acute and chronic lithium treatment on amphetamine-induced dopamine increase in the nucleus accumbens and prefrontal cortex in rats as studied by microdialysis,” J. Neural Transm. Gen. Sect., 94, No. 2, 75–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., and Walker, S., “Fitting linear mixed-effects models using lme4,” J. Stat. Softw., 67, No. 1, 1–48 (2015).

    Article  Google Scholar 

  • Brorson, J. R., Bindokas, V. P., Iwama, T., et al., “The Ca2+ influx induced by β-amyloid peptide 25–35 in cultured hippocampal neurons results from network excitation,” J. Neurobiol., 26, No. 3, 325–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Brothers, H. M., Gosztyla, M. L., and Robinson, S. R., “The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease,” Front. Aging Neurosci., 10, Art. 118 (2018).

  • Busciglio, J., Gabuzda, D. H., Matsudaira, P., and Yankner, B. A., “Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells,” Proc. Natl. Acad. Sci. USA, 90, No. 5, 2092–2096 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Can, A., Frost, D. O., Cachope, R., et al., “Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens,” J. Neurochem., 139, No. 4, 576–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetverikov, A. A., “Linear models with mixed effects in cognitive research,” Ross. Zh. Kogn. Nauki, 2, No. 1, 41–51 (2015).

    Google Scholar 

  • D’Amelio, M., Puglisi-Allegra, S., and Mercuri, N., “The role of dopaminergic midbrain in Alzheimer’s disease: Translating basic science into clinical practice,” Pharmacol. Res., 130, 414–419 (2018).

    Article  PubMed  Google Scholar 

  • Delobette, S., Privat, A., and Maurice, T., “In vitro aggregation facilities beta-amyloid peptide-(25–35)-induced amnesia in the rat,” Eur. J. Pharmacol., 319, No. 1, 1–4 (1997).

    Article  CAS  PubMed  Google Scholar 

  • DeWaele, M., Oh, Y., Park, C., et al., “A baseline drift detrending technique for fast scan cyclic voltammetry,” Analyst, 142, No. 22, 4317–4321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll, B. B. and Daw, N. D., “The expanding role of dopamine,” eLife, 5, e15963 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Duyckaerts, C., Delatour, B., and Potier, M.-C., “Classifi cation and basic pathology of Alzheimer disease,” Acta Neuropathol., 118, No. 1, 5–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fortin, S. M., Chartoff, E. H., and Roitman, M. F., “The aversive agent lithium chloride suppresses phasic dopamine release through central GLP-1 receptors,” Neuropsychopharmacology, 41, No. 3, 906–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Freir, D. B., Holscher, C., and Herron, C. E., “Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo,” J. Neurophysiol, 85, No. 2, 708–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Freland, L. and Beaulieu, J.-M., “Inhibition of GSK3 by lithium, from single molecules to signaling networks,” Front. Mol. Neurosci., 5, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, T. P., and Marder, K., “Statistical approaches to longitudinal data analysis in neurodegenerative diseases: Huntington’s disease as a model,” Curr. Neurol. Neurosci. Rep., 17, No. 2, Article 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gengler, S., Gault, V. A., Harriott, P., and Hölscher, C., “Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25–35) are dependent on stimulation-protocol and genetic background,” Exp. Brain Res., 179, No. 4, 621–630 (2007).

    Article  PubMed  Google Scholar 

  • Giuffrida, M. L., Caraci, F., Pignataro, B., et al., “Beta-amyloid monomers are neuroprotective,” J. Neurosci., 29, No. 34, 10582–10587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Mora, J. L., Salazar, P., Martín, M., and Mas, M., “Monitoring extracellular molecules in neuroscience by in vivo electrochemistry: Methodological considerations and biological applications,” in: In Vivo Neuropharmacology and Neurophysiology Neuromethods, A. Philippu (ed.), Springer, New York, (2017), pp. 181–206.

    Chapter  Google Scholar 

  • Hampel, H., Lista, S., Mango, D., et al., “Lithium as a treatment for alzheimer’s disease: the systems pharmacology perspective,” J. Alzheimers Dis., 69, No. 3, 615–629 (2019).

    Article  PubMed  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., et al., “A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease,” Proc. Natl. Acad. Sci. USA, 91, No. 8, 3270–3274 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser, T., Hohsfield, L. A., Sperner-Unterweger, B., and Humpel, C., “β-Amyloid induced effects on cholinergic, serotonergic, and dopaminergic neurons is differentially counteracted by anti-inflammatory drugs,” J. Neurosci. Res., 91, No. 1, 83–94 (2013).

    CAS  PubMed  Google Scholar 

  • Itoh, A., Nitta, A., Nadai, M., et al., “Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein–infused rats,” J. Neurochem., 66, No. 3, 1113–1117 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Jones, S. R., Mathews, T. A., and Budygin, E. A., “Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo,” Synapse, 60, No. 3, 251–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Joyce, J. N., Murray, A. M., Hurtig, H. I., et al., “Loss of dopamine D2 receptors in Alzheimer’s disease with Parkinsonism but not Parkinson’s or Alzheimer’s disease,” Neuropsychopharmacology, 19, No. 6, 472–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky, Y. G., Marlatt, M. W., Smith, M. A., and Kosenko, E. A., “Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: Evidence for Aβ25–35,” Exp. Neurol., 221, No. 1, 26–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kandel, N., Matos, J. O., and Tatulian, S. A., “Structure of amyloid β 25–35 in lipid environment and cholesterol-dependent membrane pore formation,” Sci. Rep., 9, No. 1, 1–12, Article 2689 (2019).

  • Karran, E. and De Strooper, B., “The amyloid cascade hypothesis: are we poised for success or failure?” J. Neurochem., (139, 237–252 (2016).

  • Keiflin, R., Pribut, H. J., Shah, N. B., and Janak, P. H., “Ventral tegmental dopamine neurons participate in reward identity predictions,” Curr. Biol., 29, No. 1, 93–103, e3 (2019).

  • Koch, G., Di Lorenzo, F., Bonnì, S., et al., “Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients,” Neuropsychopharmacology, 39, No. 11, 2654–2661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozunova, G. L., Voronin, N. A., Venediktov, V. V., and Stroganova, T. A., “Learning and reinforcement: the role of immediate feedback and the internal model of the situation,” Zh. Vyssh. Nerv. Deyat., 68, No. 5, 602–613 (2018).

    Google Scholar 

  • Krashia, P., Nobili, A., and D’Amelio, M., “Unifying hypothesis of dopamine neuron loss in neurodegenerative diseases: Focusing on Alzheimer’s disease,” Front. Mol. Neurosci., 12, Article 123 (2019).

  • Kubo, T., Kumagae, Y., Miller, C. A., and Kaneko, I., “β-Amyloid racemized at the ser26 residue in the brains of patients with Alzheimer disease: implications in the pathogenesis of Alzheimer disease,” J. Neuropathol. Exp. Neurol., 62, No. 3, 248–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B., “lmerTest Package: Tests in linear mixed effects models,” J. Stat. Softw., 82, No. 1, 1–26 (2017).

    Google Scholar 

  • Llorens-Marítin, M., Jurado, J., Hernández, F., and Ávila, J., “GSK-3β, a pivotal kinase in Alzheimer disease,” Front. Mol. Neurosci., 7, 1–11 (2014).

    Google Scholar 

  • Maiorov, V. I., “The function of dopamine in an operant conditioned reflex,” Zh. Vyssh. Nerv. Deyat., 68, No. 4, 404–414 (2018).

    Google Scholar 

  • Majka, P., Kublik, E., Furga, G., and Wójcik, D. K., “Common atlas format and 3d brain atlas reconstructor: infrastructure for constructing 3D brain atlases,” Neuroinformatics, 10, No. 2, 181–197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maqbool, M., Mobashir, M., and Hoda, N., “Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease,” Eur. J. Med. Chem., 107, 63–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Martorana, A., Di Lorenzo, F., Esposito, Z., et al., “Dopamine D2-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients,” Neuropharmacology, 64, 108–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Martorana, A., Mori, F., Esposito, Z., et al., “Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients,” Neuropsychopharmacology, 34, No. 10, 2323–2328 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Miklya, I., “The signifi cance of selegiline/(−)-deprenyl after 50 years in research and therapy (1965–2015),” Mol. Psychiatry, 21, No. 11, 1499–1503 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Millucci, L., Ghezzi, L., Bernardini, G., and Santucci, A., “Conformations and biological activities of amyloid beta peptide 25–35,” Curr. Protein Pept. Sci., 11, No. 1, 54–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mukhin, V. N. and Klimenko, V. M., “Mechanisms of impairment to longterm potentiation in Alzheimer’s disease,” Med. Akad. Zh., 14, No. 1, 42–51 (2014).

    Google Scholar 

  • Mukhin, V. N., “Pathogenetic mechanisms of dysfunction of the basal cholinergic system in Alzheimer’s disease,” Ros. Fiziol. Zh., 99, No. 7, 793–804 (2013).

    CAS  Google Scholar 

  • Mukhin, V. N., Sizov, V. V., Pavlov, K. I., and Klimenko, V. M., “β-Amyloid 25–35 suppresses the secretory activity of the dopaminergic system of the rat brain,” Ros. Fiziol. Zh., 103, No. 12, 1350–1360 (2017).

    Google Scholar 

  • Murray, A. M., Weihmueller, F. B., Marshall, J. F., et al., “Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism,” Ann. Neurol., 37, No. 3, 300–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Nobili, A., Latagliata, E. C., Viscomi, M. T., et al., “Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease,” Nat. Commun., 8, 1–14, Article 14727 (2017).

  • O’Brien, W. T. and Klein, P. S., “Validating GSK3 as an in vivo target of lithium action,” Biochem. Soc. Trans., 37, Part 5, 1133–1138 (2009).

  • Parihar, M. S. and Brewer, G. J., “Amyloid beta as a modulator of synaptic plasticity,” J. Alzheimers Dis., 22, No. 3, 741–763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Elsevier Academic Press, San Diego (2005).

    Google Scholar 

  • Phillips, P. E. M., Stuber, G. D., Heien, M. L. A. V., et al., “Subsecond dopamine release promotes cocaine seeking,” Nature, 422, No. 6932, 614–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Pike, C. J., Burdick, D., Walencewicz, A. J., et al., “Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state,” J. Neurosci., 13, No. 4, 1676–1687 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preda, S., Govoni, S., Lanni, C., et al., “Acute β-amyloid administration disrupts the cholinergic control of dopamine release in the nucleus accumbens,” Neuropsychopharmacology, 33, No. 5, 1062–1070 (2007).

    Article  PubMed  Google Scholar 

  • R Core Team, R: The R Project for Statistical Computing (2019).

  • Rinne, J. O., Säkö, E., Paljärvi, L., et al., “Brain dopamine D-2 receptors in senile dementia,” J. Neural. Transm., 65, No. 1, 51–62 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. L., Phillips, P. E., Budygin, E. A., et al., “Sub-second changes in accumbal dopamine during sexual behavior in male rats,” Neuroreport, 12, No. 11, 2549–2552 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rovira, C., Arbez, N., and Mariani, J., “Abeta(25–35) and Abeta(1–40) act on different calcium channels in CA1 hippocampal neurons,” Biochem. Biophys. Res. Commun, 296, No. 5, 1317–1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Šimić, G., Babić Leko, M., Wray, S., et al., “Monoaminergic neuropathology in Alzheimer’s disease,” Prog. Neurobiol., 151, 101–138 (2017).

    Article  PubMed  Google Scholar 

  • Takmakov, P., Zachek, M. K., Keithley, R. B., et al., “Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes,” Anal. Chem., 82, No. 23, 9892–9900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzakov, S. S., Ivanov, A. D., Salozhin, S. V., et al., “Lentiviral-mediated overexpression of nerve growth factor (NGF) prevents beta-amyloid [25–35]-induced long term potentiation (LTP) decline in the rat hippocampus,” Brain Res., (1624, 398–404 (2015).

  • Walker, Q. D., Rooney, M. B., Wightman, R. M., and Kuhn, C. M., “Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry,” Neuroscience, 95, No. 4, 1061–1070 (1999).

    Article  Google Scholar 

  • Wang, D., Noda, Y., Zhou, Y., et al., “The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid 25–35 i.c.v.-injected mice: involvement of dopaminergic systems,” Neuropsychopharmacology, 32, No. 6, 1261–1271 (2006).

    Article  PubMed  Google Scholar 

  • Wang, Y., Liu, L., Hu, W., and Li, G., “Mechanism of soluble beta-amyloid 25–35 neurotoxicity in primary cultured rat cortical neurons,” Neurosci. Lett., 618, 72–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., Nguyen, L. N., Kessels, H. W., et al., “Amyloid beta from axons and dendrites reduces local spine number and plasticity,” Nat. Neurosci., 13, No. 2, 190–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Xu, P., Li, Z., Wang, H., et al., “Triptolide inhibited cytotoxicity of differentiated pc12 cells induced by amyloid-beta25–35 via the autophagy pathway,” PLoS One, 10, No. 11, e0142719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Mukhin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 4, pp. 488–499, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, V.N., Borovets, I.R., Sizov, V.V. et al. β-Amyloid and Lithium Affect the Magnitude of Phasic Dopamine Release in the Shell of the Nucleus Accumbens. Neurosci Behav Physi 51, 201–208 (2021). https://doi.org/10.1007/s11055-021-01058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01058-6

Keywords

Navigation