Log in

Relationship between Long-Term Potentiation and the Initial Properties of CA3–CA1 Synapses: Importance of the Effects of External Factors on Hippocampal Synaptic Plasticity for Studies

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The phenomenon of long-term potentiation (LTP) is used for studies of the effects of various factors on the long-term plasticity of synapses in health and disease. One of the most important problems for these experiments is selection of a suitable stimulation protocol for comparing individual and group characteristics. Experiments on living hippocampal slices from Wistar rats aged 1–1.5 months addressed the individual features of the induction and maintenance of LTP (tetanization at 100 Hz for 1 sec) depending on the initial magnitude of the overall response of CA1 neurons to the stimulation of Schaffer collaterals used for tetanization and testing. The statistical relationship between the intensity of the synaptic input at the moment of tetanization and the magnitude of the post-tetanic increase after induction of LTP was assessed. Early potentiation was found to depend on the parameters of the test stimulation but not the amplitude of the response to the stimulation used for tetanization; the two factors acted independently. On testing with variable intensities, weak (near-threshold) responses were potentiated significantly more strongly than near-maximal responses. The saturation effect was found to limit mainly early LTP and only indirectly influenced the remaining potentiation. When differences in the level of early potentiation were excluded, late LTP depended on the intensity of tetanization but not the parameters of the test stimulation. The optimum tetanization of Schaffer collaterals for maintenance of LTP was the level inducing overall postsynaptic neuron responses of 1–2 mV, both weak and excessively strong activation on induction having negative impact on the efficiency with which LTP was maintained. This pattern may be due to a low level of depolarization, including in conditions of quite intense activation, due to the involvement of inhibitory interneurons in the response. These data provide evidence that all the study factors need to be considered for adequate comparison of groups of animals exposed to various environmental factors, including stress factors, particularly when the input characteristics of the connections of interest change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, W. C., “Metaplasticity: tuning synapses and networks for plasticity,” Nat. Rev. Neurosci., 9, No. 5, 387 (2008).

    Article  CAS  Google Scholar 

  • Ahmed, T., Frey, J. U., and Korz, V., “Long-term effects of brief acute stress on cellular signaling and hippocampal LTP,” J. Neurosci., 26, 3951–3958 (2006).

    Article  CAS  Google Scholar 

  • Albensi, B. C., Oliver, D. R., Toupin, J., and Odero, G., “Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant?” Exp. Neurol., 204, 1–13 (2007).

    Article  Google Scholar 

  • Alfarez, D. N., Wiegert, O., Joels, M., and Krugers, H. J., “Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation,” Neuroscience, 115, No. 4, 1119–1126 (2002).

    Article  CAS  Google Scholar 

  • Artola, A., von Frijtag, J. C., Fermont, P. C., et al., “Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment,” Eur. J. Neurosci., 23, No. 1, 261–272 (2006).

    Article  Google Scholar 

  • Barnes, C. A., Jung, M. W., Mcnaughton, B. L., et al., “LTP saturation and spatial learning disruption: effects of task variables and saturation levels,” J. Neurosci., 14, 5793–5806 (1994).

    Article  CAS  Google Scholar 

  • Bloch, V. and Laroche, S., “Enhancement of long-term potentiation in the rat dentate gyrus by post-trial stimulation of the reticular formation,” J. Physiol. (Lond.), 360, 215–231 (1985).

    Article  CAS  Google Scholar 

  • Bourne, J. N. and Harris, K. M., “Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP,” Hippocampus, 21, 354–373 (2011).

    Article  CAS  Google Scholar 

  • Bramham, C. R., “Local protein synthesis, actin dynamics, and LTP consolidation,” Curr. Opin. Neurobiol., 18, No. 5, 524–531 (2008).

    Article  CAS  Google Scholar 

  • Connor, S. A., Wang, Y. T., and Nguyen, P. V., “Activation of {beta}-adrenergic receptors facilitates heterosynaptic translation-dependent longterm potentiation,” J. Physiol., 589, No. 17, 4321–4340 (2011).

    Article  CAS  Google Scholar 

  • Duffy, S. N., Craddock, K. J., Abel, T., and Nguyen, P. V., “Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory,” Learn. Mem., 8, 26–34 (2001).

    Article  CAS  Google Scholar 

  • Faas, G. C., Raghavachari, S., Lisman, J. E., and Mody, I., “Calmodulin as a direct detector of Ca2+ signals,” Nat. Neurosci., 14, No. 3, 301–304 (2011).

    Article  CAS  Google Scholar 

  • Frey, S. and Frey, J. U., “’Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation,” Prog. Brain Res., 169, 117–143 (2008).

    Article  CAS  Google Scholar 

  • Frey, S., Bergado, J. A., and Frey, J. U., “Modulation of late phases of longterm potentiation in rat dentate gyrus by stimulation of the medial septum,” Neuroscience, 118, 1055–1062 (2003).

    Article  CAS  Google Scholar 

  • Fritschy, J. and Panzanelli, P., “GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system,” Eur. J. Neurosci., 39, 1845–1865 (2014).

    Article  Google Scholar 

  • Gelinas, J. N., Tenorio, G., Lemon, N., et al., “Beta-adrenergic receptor activation during distinct patterns of stimulation critically modulates the PKA-dependence of LTP in the mouse hippocampus,” Learn. Mem., 15, No. 5, 281–289 (2008).

    Article  CAS  Google Scholar 

  • Genrikhs, E. E., Stelmashook, E. V., Popova, O. V., et al., “Mitochondriatargeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-P-induced impairment of longterm potentiation in rat hippocampal slices,” J. Drug Target, 23, No. 4, 347–352 (2015).

    Article  CAS  Google Scholar 

  • Granado, N., Ortiz, O., Sudrez, L. M., et al., “D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus,” Cereb. Cortex, 18, No. 1, 1–12 (2008).

    Article  Google Scholar 

  • Gulyaeva, N. V., “Interplay between brain BDNF and glutamatergic systems: A brief state of the evidence and association with the pathogenesis of depression,” Biochemistry (Mosc.), 82, No. 3, 301–307 (2017a).

    Article  CAS  Google Scholar 

  • Gulyaeva, N. V., “Molecular mechanisms of neuroplasticity: An expanding universe,” Biochemistry (Mosc.), 82, No. 3, 237–242 (2017b).

    Article  CAS  Google Scholar 

  • Gulyaeva, N. V., “Studies on stress-induced modulation of long term potentiation in rodent hippocampus: what can we learn about pathogenesis of depression?” Transl. Brain Rhythm, 1, No. 2, 35–40 (2016).

    Article  Google Scholar 

  • Hayama, T., Noguchi, J., Watanabe, S., et al., “GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling,” Nat. Neurosci., 16, 1409–1416 (2013).

    Article  CAS  Google Scholar 

  • Huang, Y. Y., Colino, A., Selig, D. K., and Malenka, R. C., “The influence of prior synaptic activity on the induction of long-term potentiation,” Science, 255, 730–733 (1992).

    Article  CAS  Google Scholar 

  • Jeffery, K. J., “Paradoxical enhancement of long-term potentiation in poor-learning rats at low test stimulus intensities,” Exp. Brain Res., 104, No. 1, 55–69 (1995).

    Article  CAS  Google Scholar 

  • Joels, M. and Krugers, H. J., “LTP after stress: up or down?” Neural Plast., 9320210.1155 (2007).

    Google Scholar 

  • Kapay, N. A., Popova, O. V., Isaev, N. K., et al., “Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-P-induced impairment of long-term potentiation in rat hippocampal slices,” J. Alzh. Dis., 36, No. 2, 377–383 (2013).

    Article  CAS  Google Scholar 

  • Kemp, A. and Manahan-Vaughan, D., “Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition,” Proc. Natl. Acad. Sci. USA, 101, 8192–8197 (2004).

    Article  CAS  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., et al., “Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome,” J. Neurosci., 24, 8153–8160 (2004).

    Article  CAS  Google Scholar 

  • Kleshchevnikov, A. M. and Voronin, L. L., “Repeated induction of longterm potentiation on saturation of long-term potentiation in living hippocampal slices,” Dokl. Akad. Nauk., 340, No. 5, 694–696 (1995).

    CAS  PubMed  Google Scholar 

  • Korz, V. and Frey, J. U., “Hormonal and monoamine signaling during reinforcement of hippocampal long-term potentiation and memory retrieval,” Learn. Mem., 14, No. 3, 160–166 (2007).

    Article  Google Scholar 

  • Kudryashova, I. V. and Gulyaeva, N. V., “Unpredictable stress: the ambiguity of stress reactivity in studies of long-term plasticity,” Zh. Vyssh. Nerv. Deyat., 66, No. 4, 414–428 (2016).

    CAS  Google Scholar 

  • Kudryashova, I. V., “Analysis of the conditions for the onset of the consolidation process in a model of long-term synaptic potentiation,” Neirokhimiya, 30, No. 3, 207–215 (2013).

    Google Scholar 

  • Kudryashova, I. V., “Plasticity of inhibitory synapses as a factor in longterm modification,” Neirokhimiya, 32, No. 3, 181–191 (2015).

    Google Scholar 

  • Kulla, A. and Manahan-Vaughan, D., “Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats,” Cereb. Cortex, 12, 150–162 (2002).

    Article  Google Scholar 

  • Larson, J., Wong, D., and Lynch, G., “Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation,” Brain Res., 19, 347–350 (1986).

    Article  Google Scholar 

  • Lemon, N. and Manahan-Vaughan, D., “Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression,” J. Neurosci., 26, 7723–7729 (2006).

    Article  CAS  Google Scholar 

  • Lovett-Barron, M., Turi, G. F., Kaifosh, P., et al., “Regulation of neuronal input transformations by tunable dendritic inhibition,” Nat. Neurosci., 15, No. 3, 423–430 (2012).

    Article  CAS  Google Scholar 

  • Lynch, G., Rex, C. S., and Gall, C. M., “LTP consolidation: substrates, explanatory power, and functional significance,” Neuropharmacology, 52, No. 1, 12–23 (2007).

    Article  CAS  Google Scholar 

  • Maity, S., Rah, S., Sonenberg, N., et al., “Norepinephrine triggers metaplasticity of LTP by increasing translation of specifi c mRNAs,” Learn. Mem., 22, No. 10, 499–508 (2015).

    Article  CAS  Google Scholar 

  • Martin, S. J., Grimwood, P. D., and Morris, R. G. M., “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annu. Rev. Neurosci., 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  • Martin, S. J., Shires, K. L., and Spooner, P. A., “The relationship between tetanus intensity and the magnitude of hippocampal long-term potentiation in vivo,” Neuroscience, 231, 363–372 (2013).

    Article  CAS  Google Scholar 

  • Matsuyama, S., Taniguchi, T., Kadoyama, K., and Matsumoto, A., “Longterm potentiation-like facilitation through GABAA receptor blockade in the mouse dentate gyrus in vivo,” Neuroreport, 19, 1809–1813 (2008).

    Article  CAS  Google Scholar 

  • McNaughton, B. L., Douglas, R. M., and Goddard, G. V., “Synaptic enhancement in fascia dentata: cooperativity among coactive afferents,” Brain Res., 157, 277–293 (1978).

    Article  CAS  Google Scholar 

  • Moser, E. I. and Moser, M. B., “Is learning blocked by saturation of synaptic weights in the hippocampus?” Neurosci. Biobehav. Rev., 23, No. 5, 661–672 (1999).

    Article  CAS  Google Scholar 

  • Müller, C., Beck, H., Coulter, D., and Remy, S., “Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal Neurons,” Neuron, 75, 851–864 (2012).

    Article  Google Scholar 

  • Onufriev, M. V., Freiman, S. V., Peregud, D. I., et al., “Neonatal proinflammatory stress induces accumulation of corticosterone and interleukin-6 in the hippocampus of juvenile rats: potential mechanism of synaptic plasticity impairments,” Biochemistry (Mosc.), 82, No. 3, 275–281 (2017).

    Article  CAS  Google Scholar 

  • Onufriev, M., Lazareva, N., and Gulyaeva, N., “Neonatal proinflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response,” Behav. Brain Res., 1, No. 304, 1–10 (2016).

    Google Scholar 

  • Ormond, J. and Woodin, M. A., “Disinhibition mediates a form of hippocampal long-term potentiation in area CA1,” PLoS One, 4, No. 9, e7224 (2009).

    Article  Google Scholar 

  • Otnaess, M. K., Brun, V. H., Moser, M. B., and Moser, E. I., “Pre-training prevents spatial learning impairment after saturation of hippocampal long-term potentiation,” J. Neurosci., 19, RC49 (1999).

    Article  CAS  Google Scholar 

  • Paille, V., Fino, E., Du, K., et al., “GABAergic circuits control spike-timing-dependent plasticity,” J. Neurosci., 33, No. 22, 9353–9363 (2013).

    Article  CAS  Google Scholar 

  • Povarov, I. S., Kondratenko, R. V., Derevyagin, V. I., et al., “Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus,” Byull. Exp. Biol. Med., 158, No. 3, 349–351 (2015).

    Article  CAS  Google Scholar 

  • Rannals, M. D. and Kapur, J., “Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABAA receptors,” J. Neurosci., 31, No. 48, 17701–17712 (2011).

    Article  CAS  Google Scholar 

  • Richter-Levin, G. and Akirav, I., “Emotional tagging of memory formation in the search for neural mechanisms,” Brain Res. Rev., 43, No. 3, 247–256 (2003).

    Article  Google Scholar 

  • Saraga, F., Balena, T., Wolansky, T., et al., “Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus,” Neuroscience, 155, 64–75 (2008).

    Article  CAS  Google Scholar 

  • Seidenbecher, T., Reymann, K. G., and Balschun, D., “A post-tetanic time window for the reinforcement of long-term potentiation by appetitive and aversive stimuli,” Proc. Natl. Acad. Sci. USA, 94, 1494–1499 (1997).

    Article  CAS  Google Scholar 

  • Shen, H., Sabaliauskas, N., Sherpa, A., et al., “A critical role for alpha-4betadelta GABAA receptors in sha** learning deficits at puberty in mice,” Science, 327, 1515–1518 (2010).

    Article  CAS  Google Scholar 

  • Shors, T. J. and Matzel, L. D., “Long-term potentiation: what’s learning got to do with it?” Behav. Brain Sci., 20, 597–614 (1997).

    Article  CAS  Google Scholar 

  • Skrebitsky, V. G. and Shtark, M. B., “Basics of nervous system plasticity,” Vestn. Ross. Akad. Med. Nauk, 9, 39–44 (2012).

    Article  Google Scholar 

  • Skrebitsky, V. G. and Vorobyev, V. S., “A study of synaptic plasticity in hippocampal slices,” Acta Neurobiol. Exp. (Wars.), 39, No. 6, 633–642 (1979).

    CAS  Google Scholar 

  • Skrebitsky, V. G., Kondratenko, R. V., Povarov, I. S., and Derevyagin, V. I., “Peptidergic modulation of synaptic activity in the hippocampus,” Neurosci. Behav. Physiol., 43, No. 5, 650–655 (2013).

    Article  Google Scholar 

  • Solntseva, E. I., Kapai, N. A., Popova, O. V., et al., “The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide,” Brain Res. Bull., 106, 56–61 (2014).

    Article  CAS  Google Scholar 

  • Uzakov, Sh., Frey, J. U., and Korz, V., “Reinforcement of rat hippocampal LTP by holeboard training,” Learn. Mem., 12, No. 2, 165–171 (2005).

    Article  Google Scholar 

  • Voronin, L., Byzov, A., Kleschevnikov, A., et al., “Neurophysiological analysis of long-term potentiation in mammalian brain,” Behav. Brain Res., 66, No. 1–2, 45–52 (1995).

    Article  CAS  Google Scholar 

  • Wakita, M., Kotani, N., Kogure, K., and Akaike, N., “Inhibition of excitatory synaptic transmission in hippocampal neurons by levetiracetam involves Zn2+-dependent GABAA receptor-mediated presynaptic modulation,” J. Pharmacol. Exp. Ther., 348, 246–259 (2013).

    Article  Google Scholar 

  • Wang, L. and Maffei, A., “Inhibitory plasticity dictates the sign of plasticity at excitatory synapses,” J. Neurosci., 34, 1083–1093 (2014).

    Article  CAS  Google Scholar 

  • Willadt, S., Nenniger, M., and Vogt, K. E., “Hippocampal feedforward inhibition focuses excitatory synaptic signals into distinct dendritic compartments,” PLoS One, 8, No. 11, e80984 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kudryashova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 6, pp. 705–720, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, I.V. Relationship between Long-Term Potentiation and the Initial Properties of CA3–CA1 Synapses: Importance of the Effects of External Factors on Hippocampal Synaptic Plasticity for Studies. Neurosci Behav Physi 49, 603–614 (2019). https://doi.org/10.1007/s11055-019-00776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00776-2

Keywords

Navigation