Log in

Structural Characteristics and Spatial Organization of Parvalbumin-Containing Neurons in Somatosensory Zone SI of the Cerebral Cortex in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to perform layer-by-layer morphometric and immunohistochemical studies of parvalbumin-positive (PA+) neurons in the somatosensory zone (SI) of the cerebral cortex in white mongrel rats (n = 10). Studies of frontal and tangential sections of thickness 60 and 4 μm revealed significant variation in shape, body size, and process branching among PA+ neurons in all cortical layers. The greatest proportion of PA+ neurons (47.1%) was located in cortical layer IV in the barrel formation zone. Studies of tangential sections showed that the greatest proportion of PA+ neurons was located in barrel septa (43%). These cells in layer IV were distributed most densely in barrel walls, such that their outlines were clearly visible. The quantitative dominance of PA+ neurons in septa may be linked with the direction of the course of their dendrites in the internal part of the barrel and the formation of dendrodendritic gap junctions, which may in turn provide the morphological basis for individual local pacemaker rhythmogenesis and regulation of the functional state of cortical columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yu. Kirichenko, A. G. Sukhov, A. K. Logvinov, and P. E. Povilaitite, “Analysis of the spatial distribution of gap junctions relative to chemical synapses on serial ultrathin sections of because rat barrel cortex,” Morfologiya, 141, No. 2, 13–17 (2012).

  2. V. C. Cuzon Carlson and H. H. Yeh, “GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence,” Cereb. Cortex, 21, No. 8, 1792–1802 (2011).

    Article  PubMed  Google Scholar 

  3. M. S. Bezaire and I. Soltesz, “Quantitative assessment of CAI local circuits: Knowledge base for interneuron-pyramidal cell connectivity,” Hippocampus, No. 23, 751–785 (2013).

  4. J. DeFelipe, P. L. Lopez-Cruz, R. Benavides-Piccione, et al., “New insights into classification and nomenclature of cortical GABAergic interneurons,” Nat. Rev. Neurosci., 14, No. 3, 202–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Druga, “Neocortical inhibitory system,” Folia Biol., 55, 201–247 (2009).

    CAS  Google Scholar 

  6. K. M. Fish, G. D. Hoffman, W. Sheikh, et al., “Parvalbumin-containing chandelier and basket cell boutons have distinctive modes of maturation in monkey prefrontal cortex,” J. Neurosci., 33, No. 19, 8352–8358 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Fukuda and T. Kosaka, “Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat,” Neuroscience, 120, No. 1, 5–20 (2003).

  8. T. Fukuda, T. Kosaka, W. Singer, and R. A. Galuske, “Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network,” J. Neurosci., 26, No. 13, 3434–3443 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. N. L. Golding and N. Spruston, “Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons,” Neuron, 21, 1189–1200 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. M. Inan, L. Blázquez-Llorca, A. Merchán-Pérez, et al., “Dense and overlap** innervation of pyramidal neurons by chandelier cells,” J. Neurosci., 33, No. 5, 1907–1914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Martina, I. Vida, and P. Jonas, “Distal initiation and active propagation of action potentials in interneuron dendrites,” Science, 287, 295–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. G. J. Stuart and B. Sakmann, “Active propagation of somatic action potentials into neocortical pyramidal cell dendrites,” Nature, 367, 69–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. N. Suzuki and J. M. Bekkers, “Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers,” J. Comp. Neurol., 518, No. 10, 1670–1687 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. K. Vervaeke, A. Lorincz, Z. Nusser, and R. A. Silver, “Gap junctions compensate for sublinear dendritic integration in an inhibitory network,” Science, 335, 1624–1628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C. P. Wonders, L. Taylor, J. Welagen, et al., “A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence,” Dev. Biol., 314, No. 1, 127–136 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sukhov.

Additional information

Translated from Morfologiya, Vol. 148, No. 6, pp. 18–22, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhov, A.G., Kirichenko, E.Y. & Belichenko, L.A. Structural Characteristics and Spatial Organization of Parvalbumin-Containing Neurons in Somatosensory Zone SI of the Cerebral Cortex in Rats. Neurosci Behav Physi 46, 863–867 (2016). https://doi.org/10.1007/s11055-016-0323-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0323-9

Keywords

Navigation