Log in

ATP-Dependent and Calcium Mechanisms of the Effects of Salicylates on Electrical Potentials in Neurons in the Mollusk Helix Albescens

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This report presents our studies of the ATP-dependent and calcium mechanisms of the effects of salicylates on the electrical activity of neurons in the mollusk Helix albescens Rossm. Adenosine triphosphate (5·10–4 M) added simultaneously with salicylates in the extracellular medium significantly modified their neurotropic effects, eliminating the nonselective suppression of neuron spike activity by acetylsalicylic acid and increasing the activatory influences of cobalt and zinc acetylsalicylates. Blockade of uptake of Ca2+ into the neuroplasm from the extracellular medium and intracellular depots with 5·10–5 M and 5·10–4 M CdCl2 and BaCl2 had no significant effect on neuron responses to salicylates, suggesting that calcium mechanisms are not involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Boldyrev, “The role of the Na+-Ca2+ pump in excitable tissues,” Zh. Sib. Feder. Univ. Biol., 3, No. 1, 206–225 (2008).

    Google Scholar 

  2. A. I. Vislobokov, Yu. D. Ignatov, and K. N. Mel’nikov, Pharmacological Modulation of Neuron Membrane Ion Channels, St. Petersburg State Medical University Press, St. Petersburg (2006).

    Google Scholar 

  3. T. Kh. Gainutdinova, D. I. Silant’eva, V. V. Andrianov, et al., “Effects of increases and decreases in extracellular calcium levels on the electrical properties of command neurons in trained snails,” Uchen. Zap. Kazan. Univ. Ser. Estestv. Nauki, 15, No. 2, 29–40 (2010).

    Google Scholar 

  4. M. M. Dale and J. K. Foreman, Textbook of Immunopharmacology [Russian translation], Meditsina, Moscow (1998).

    Google Scholar 

  5. A. A. Zamotailov and I. I. Korenyuk, Auth. Certif. No. 1164229 Ukraine, “A computer program for the recording, processing, and automated analysis of bioelectrical signals,” publ. Nov. 29, 2004, Byull., No. 11.

  6. A. L. Zefirov and G. F. Sitdikova, “The ion channels of nerve endings,” Usp. Fiziol. Nauk., 33, No. 4, 3–33 (2002).

    CAS  PubMed  Google Scholar 

  7. A. U. Ziganshin, “The role of ATP receptors (P2 receptors) in the nervous system,” Nevrol. Vestn. Bekht., 37, No. 1–2, 45–53 (2005).

    Google Scholar 

  8. N. I. Kononenko and IO. N. Osipenko, “Effects of cadmium ions on the volley electrical activity of an identified common snail neuron,” Neirofiziologiya, 15, No. 3, 2047–2054 (1983).

  9. I. I. Korenyuk, D. R. Khusainov, and V. F. Shul’gin, “Effects of salicylic acid and its salts on electrical activity in common snail neurons,” Neirofiziologiya, 37, No. 2, 142–150 (2005).

    Google Scholar 

  10. I. I. Korenyuk, D. R. Khusainov, and V. F. Shul’gin, “Cobalt and zinc salicylates as functional analogs of initiating factor in the mollusk nervous system,” Neirofiziologiya, 38, No. 1, 11–18 (2006).

    Google Scholar 

  11. K. N. Mel’nikov, “Diversity and properties of calcium channels in excitable membranes,” Psikhofarmakol. Biol. Narkol., 6, No. 1–2, 1139–1155 (2006).

    Google Scholar 

  12. A. A. Naumova, L. S. Kurilova, and K. Voitsekhovich, “The effects of aspirin on Ca2+ signals induced by glutoxim in peritoneal macrophages,” Fundam. Nauka Klin. Med., 15, 389–390 (2012).

    Google Scholar 

  13. N. B. Pestov, R. I. Dmitriev, and M. I. Shakhporonov, “Regulation of plasma membrane Ca-ATPase,” Usp. Biol. Khim., 43, No. 1, 99–138 (2003).

    CAS  Google Scholar 

  14. A. M. Safullina, A. M. Kas’yanov, E. M. Sokolova, et al., “The modulatory effect of adenosine triphosphate on the oscillatory properties of hippocampal neurons in early ontogeny,” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 446–450 (2003).

    Google Scholar 

  15. Yu. M. Usachev and S. L. Mironov, “Effects of strontium and barium ions on the calcium binding and transport system in nerve cells,” Neirofiziologiya, 21, No. 6, 820–826 (1989).

  16. I. V. Cheretaev, I. I. Korenyuk, D. R. Khusainov, et al., “Effects of cobalt and zinc acetylsalicylates on the electrical activity of neurons,” Akt. Vopr. Biol. Med., 10, 106–109 (2012).

    Google Scholar 

  17. T. V. Yakovchuk, O. V. Katyushina, D. R. Khusainov, et al., “Antiinflammatory activity of salts of salicylic and acetylsalicylic acids,” Uch. Zap. Tavrich. Nats. Univ. im. Vernadskogo. Ser. Biol. Khim., 24, No. 2, 332–338 (2011).

    Google Scholar 

  18. M. G. Berridge, “Neuronal calcium signaling,” Neuron, 21, No. 1, 13–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. M. Brini and E. Carafoli, “Calcium pumps in health and disease,” Physiol. Rev., 89, No. 4, 1341–1378 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. G. Burnstock, “ATP and its metabolites as potent extracellular agents,” Curr. Top. Membr., 54, No. 1, 1–27 (2003).

    Article  CAS  Google Scholar 

  21. G. Burnstock, “Physiology and pathophysiology of purinergic neurotransmission,” Physiol. Rev., 87, No. 2, 659–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. R. Dipolo and L. Beauge, “Sodium-calcium exchanger: influence of metabolic regulation on ion carrier interactions,” Physiol. Rev., 86, No. 1, 155–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. W. Graffrath, T. Kirschtein, H. Nawrath, and R. D. Treede, “Acetylsalicylic acid reduces heat responses in rat nociceptive primary sensory neurons – evidence for a new mechanism of action,” Neurosci. Lett., 320, No. 1–2, 61–64 (2002).

    Article  Google Scholar 

  24. J. G. Hardman, L. E. Limbird, and A. G. Gilman, Goodman and Gilman’s The Pharmacological Basis of Therapeutics, McGraw-Hill, New York (2001).

    Google Scholar 

  25. M. C. Jeziorski, R. M. Greenberg, and P. A. Anderson, “The molecular biology of invertebrate voltage-gated Ca2+-channels,” J. Exp. Biol., 203, No. 5, 841–856 (2000).

    CAS  PubMed  Google Scholar 

  26. K. S. Kits and H. D. Mansvelder, “Voltage gated calcium channels in molluscs: classification, Ca2+ dependent inactivation, modulation and functional roles,” Invert. Neurosci., 2, No. 1, 9–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. N. A. Lozovaya, C. A. Vulfius, V. I. Ilyin, and I. V. Krasts, “Intracellular ATP modifies the voltage dependence of the fast transient outward K+ current in Lymnaea stagnalis neurons,” J. Physiol., 464, 441–445 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. L. Moroz, J. R. Edwards, and S. Puthanveettil, “Neuronal transcriptome of Aplysia: neuronal compartments and circuitry,” Cell, 127, No. 7, 1453–1467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Ott, B. Kircher, C. Bagowski, et al., “Modulation of the biological properties of aspirin by formation of a bioorganometallic derivative,” Angew. Chem. Int. Ed., 48, No. 6, 1160–1163 (2009).

    Article  CAS  Google Scholar 

  30. A. B. Parekh and J. W. Putney, “Store-operated calcium channels,” Physiol. Rev., 85, No. 2, 757–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. E. Perez-Reyes, “Molecular physiology of low-voltage-activated T-type calcium channels,” Physiol. Rev., 83, No. 1, 117–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. J. Sokolik, I. Tumova, M. Blahova, et al., “Anti-inflammatory activities of copper (II) and zinc (II) 3. 6-dimethylsalicylates and their equimolar mixture,” Acta Facult. Farm. Univ. Comenianae, 53, 224–228 (2006).

    Google Scholar 

  33. Y. Y. Su, B. Luo, H. T. Wang, and L. Chen, “Differential effects of sodium salicylate on current-evoked firing of pyramidal neurons and fast-spiking interneurons in slices of rat auditory cortex,” Hear. Res., 253, No. 1–3, 60–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. M.-P. Wu, L.-S. Kao, H.-T. Liao, and C.-Y. Pan, “Reverse mode Na+-Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons,” Brain Res., 128, No. 1, 41–51 (2008).

    Article  Google Scholar 

  35. X. Zhang, P. Yang, Y. Cao, and Y. Sato, “Salicylate induced neural changes in the primary auditory cortex of awake cats,” Neuroscience, 172, No. 1, 232–245 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Cheretaev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 3, pp. 326–336, March, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheretaev, I.V., Korenyuk, I.I., Khusainov, D.R. et al. ATP-Dependent and Calcium Mechanisms of the Effects of Salicylates on Electrical Potentials in Neurons in the Mollusk Helix Albescens . Neurosci Behav Physi 46, 644–651 (2016). https://doi.org/10.1007/s11055-016-0291-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0291-0

Keywords

Navigation