Log in

Development of SnO2-SnSe composites for the efficient photocatalytic degradation of methylene blue

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The discharge of toxic industrial effluents into freshwater has a significant impact on both humans and aquatic lives, which needs to be addressed on an urgent basis. SnO2, a wide bandgap material possesses good photocatalytic properties, which can be exploited to degrade organic pollutants. However, there is a need to develop an appropriate strategy to decrease its bandgap and minimize the recombination of charge carriers. For this purpose, we are reporting the synthesis of SnO2/SnSe composites by wet chemical process in various ratios. The as-synthesized samples were analyzed through various characterization techniques. The X-ray diffraction (XRD) patterns confirmed the successful synthesis of tetragonal rutile SnO2 and orthorhombic structure of SnSe. The average crystallite size varied between 25 and 35 nm. UV–visible spectroscopy (UV–vis) confirmed that the bandgap of SnO2 and SnSe was 3.63 eV and 1.21 eV, respectively, whereas the bandgap of composites ranged from 3.47 to 3.03 eV. The FTIR spectrum exhibited absorption peaks at 745 cm−1, 1113 cm−1, and 1381 cm−1 due to the Sn–O–Sn bond and Sn–OH bond vibrations. Whereas the absorption observed at 665 cm−1 is associated with Se–O bond vibration. Raman spectroscopy revealed the bands at 629 cm−1 and 767 cm−1 for the rutile structure of SnO2 and bands at 75 cm−1, and 152 cm−1 are characteristic of SnSe. Scanning electron microscopy (SEM) illustrated the formation of irregular-shaped agglomerated nanoparticles of the prepared materials. Photodegradation of methylene blue (MB) revealed that the composite containing 78% SnO2 and 32% SnSe (denoted as SS-4) was highly an highly effective catalyst and degraded 97.1% of MB in 120 min. The reaction kinetics of the prepared photocatalysts satisfied the Langmuir–Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in the paper can be made available on reasonable requests.

References

  1. Li Z, Sun L, Liu Y, Zhu L, Yu D, Wang Y, Sun Y, Yu M (2019) SnSe@ SnO2 core–shell nanocomposite for synchronous photothermal–photocatalytic production of clean water. Environ Sci Nano 6(5):1507–1515

    Article  CAS  Google Scholar 

  2. Munawar T, Nadeem MS, Mukhtar F, Manzoor S, Ashiq MN, Batool S, Hasan M, Iqbal F (2023) Multifunctional dual Z-scheme heterostructured Sm2O3-WO3-La2O3 nanocomposite: enhanced electrochemical, photocatalytic, and antibacterial properties. Adv Powder Technol 34(7):104061

    Article  CAS  Google Scholar 

  3. Nadeem MS, Munawar T, Mukhtar F, Ur Rahman MN, Riaz M, Iqbal F (2021) Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-do**. Ceram Int 47(8):11109–11121

    Article  CAS  Google Scholar 

  4. Beena V, Ajitha S, Rayar SL, Parvathiraja C, Kannan K, Palani G (2021) Enhanced photocatalytic and antibacterial activities of ZnSe nanoparticles. J Inorg Organomet Polym Mater 31(11):4390–4401

    Article  CAS  Google Scholar 

  5. Kannan K, Radhika D, Kasai RD, Gnanasangeetha D, Palani G, Gurushankar K, Koutavarapu R, Lee D-Y, Shim J (2022) Facile fabrication of novel ceria-based nanocomposite (CYO-CSO) via co-precipitation: electrochemical, photocatalytic and antibacterial performances. J Mol Struct 1256:132519

    Article  CAS  Google Scholar 

  6. Saro**i P, Leeladevi K, Kavitha T, Gurushankar K, Sriram G, Oh TH, Kannan K (2023) Design of V2O5 blocks decorated with garlic peel biochar nanoparticles: a sustainable catalyst for the degradation of methyl orange and its antioxidant activity. Materials 16(17):5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmad F, Hussain R, Khan SU, Shah A, Alajmi MF, Arif M, Hussain A, Parveen I, Rahman SU (2024) Synthesis of highly effective CuO–FeSe2 composites for the photodegradation of RhB under visible light. Chem Intermed 24:05286

    Google Scholar 

  8. Kannan K, Radhika D, Nesaraj AS, Kumar Sadasivuni K, Sivarama Krishna L (2020) Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications. Inorg Chem Commun 122:108307

    Article  CAS  Google Scholar 

  9. Lin J, Luo Z, Liu J, Li P (2018) Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater Sci Semicond 87:24–31

    Article  CAS  Google Scholar 

  10. Al-Hamdi AM, Sillanpää M, Dutta J (2014) Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO2 nanoparticles. J Mater Sci 49:5151–5159

    Article  CAS  Google Scholar 

  11. Nadeem MS, Munawar T, Mukhtar F, Rabbani AW, Khan SA, Koc M, Iqbal F (2023) Synergistic photocatalytic properties of fullerene (C60) anchored V/Cu dual-doped NiO nanocomposites for water disinfection. Mate Sci Eng B 297:116705

    Article  CAS  Google Scholar 

  12. Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P, Jonnalagadda SB, Thakur VK (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524

    Article  Google Scholar 

  13. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol 12:100255

    Google Scholar 

  14. Jang HD, Kim S-K, Kim S-J (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanoparticle Res 3(2):141–147

    Article  CAS  Google Scholar 

  15. Beydoun D, Amal R, Low G, Mcevoy S (1999) Role of nanoparticles in photocatalysis. J Nanoparticle Res 1(4):439–458

    Article  CAS  Google Scholar 

  16. Yu J, Yu JC, Cheng B, Zhao X (2002) Photocatalytic activity and characterization of the sol-gel derived Pb-doped TiO2 thin films. J Sol-Gel Sci Technol 24:39–48

    Article  CAS  Google Scholar 

  17. Bagga V, Singh N, Khanuja M, Rani M, Kaur D (2023) Enhanced photocatalytic degradation of Rhodamine B and Methylene blue by novel TiO2/SnSe-SnO2 hybrid nanocomposites under sunlight irradiation: Correlation of photoluminescence property with photocatalytic activity. Mater Res Bull 159:112109

    Article  CAS  Google Scholar 

  18. Sivakumar S, Manikandan E (2018) Novel synthesis of optical photoluminescence properties and supercapacitor application on Zn2+ do** sn1-xZnxo2 nanoparticles. IJSRPAS 6:01–13

    Article  Google Scholar 

  19. Zhao Y, Zhang Y, Yao L, Zhang M (2014) Novel synthesis and characterization of SnS2/SnO2 nanocomposite photocatalyst. Mater Lett 130:104–106

    Article  CAS  Google Scholar 

  20. Perumal V, Uthrakumar R, Chinnathambi M, Inmozhi C, Robert R, Rajasaravanan M, Raja A, Kaviyarasu K (2023) Electron-hole recombination effect of SnO2–CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. J King Saud Univ Sci 35(1):102388

    Article  Google Scholar 

  21. Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Ahamed M (2022) One-pot synthesis of SnO2-rGO nanocomposite for enhanced photocatalytic and anticancer activity. Polymers 14(10):2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Husna RA, Natsir TA (2023) Enhancing photocatalytic degradation of methylene blue by mixed oxides TiO2/SnO2/CeO2 under visible light. Results Eng 19:101253

    Article  CAS  Google Scholar 

  23. Sagadevan S, Lett JA, Weldegebrieal GK, Imteyaz S, Johan MR (2021) Synthesis, characterization, and photocatalytic activity of PPy/SnO2 nanocomposite. Chem Phys Lett 783:139051

    Article  CAS  Google Scholar 

  24. **a H, Zhuang H, Zhang T, **ao D (2008) Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2. Mater Lett 62(67):1126–1128

    Article  CAS  Google Scholar 

  25. Kumar JV, Ajarem JS, Allam AA, Manikandan V, Arulmozhi R, Abirami N (2022) Construction of SnO2/g-C3N4: an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ Res 209:112809

    Article  PubMed  Google Scholar 

  26. Usharani S, Rajendran V (2016) Optical, magnetic properties and visible light photocatalytic activity of CeO2/SnO2 nanocomposites. Eng Sci Technol an Int 19(4):2088–2093

    Article  Google Scholar 

  27. Kumar MR, Murugadoss G, Venkatesh N, Sakthivel P (2020) Synthesis of Ag2O-SnO2 and SnO2-Ag2O nanocomposites and investigation on photocatalytic performance under direct sun light. ChemistrySelect 5(23):6946–6953

    Article  CAS  Google Scholar 

  28. Zinatloo-Ajabshir S, Morassaei MS, Salavati- Niasari M (2017) Facile fabrication of Dy2Sn2O7-SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J Colloid Interface Sci 497:298–308

    Article  CAS  PubMed  Google Scholar 

  29. Shoreh SKH, Ahmadyari-Sharamin M, Ghayour H, Hassanzadeh-Tabrizi SA, Pournajaf R, Tayebi M (2021) Two- stage synthesis of SnO2-Ag/MgFe2O4 nanocomposite for photocatalytic application. Surf Interfaces 26:101326

    Article  CAS  Google Scholar 

  30. Govindan V, Kashinath L, Geetha G, Senthilpandian M, Ramasamy P, Sankaranarayanan K (2022) One-pot microwave synthesis of SnSe and Lanthanum doped SnSe nanostructure with direct Z scheme pattern for excellent photodegradation of organic pollutants. Ceram Int 48(9):12228–12239

    Article  CAS  Google Scholar 

  31. Cheng Y, Yang H, Zhang J, **ong X, Chen C, Zeng J, ** J, Yuan Y-J, Ji Z (2022) Novel 0D/2D ZnSe/SnSe heterojunction photocatalysts exhibiting enhanced photocatalytic and photoelectrochemical activities. J Alloys Compd 897:163123

    Article  CAS  Google Scholar 

  32. Kaur D, Bagga V, Behera N, Thakral B, Asija A, Kaur J (2019) Kaur S (2019) SnSe/SnO2 nanocomposites: novel material for photocatalytic degradation of industrial waste dyes. Adv Compos Hybrid Mater 2(4):763–776

    Article  CAS  Google Scholar 

  33. Mandal P, Show B, Ahmed S, Banerjee D, Mondal A (2020) Visible-light active electrochemically deposited tin selenide thin films: synthesis, characterization and photocatalytic activity. J Mater Sci Mater Electron 31(6):4708–4718

    Article  CAS  Google Scholar 

  34. Patel K, Parangi T, Solanki G, Mishra M, Patel K, Pathak V (2021) Photocatalytic degradation of methylene blue and crystal violet dyes under UV light irradiation by sonochemically synthesized CuSnSe nanocrystals. Eur Phys J Plus 136:1–17

    Article  Google Scholar 

  35. Karpuraranjith M, Chen Y, Wang X, Yu B, Rajaboopathi S, Yang D (2020) Hexagonal SnSe nanoplate supported SnO2-CNTs nanoarchitecture for enhanced photocatalytic degradation under visible light driven. Appl Surf Sci 507:145026

    Article  CAS  Google Scholar 

  36. Kharatzadeh E, Masharian SR, Yousefi R (2021) The effects of S-do** concentration on the photocatalytic performance of SnSe/S-GO nanocomposites. Adv Powder Technol 32(2):346–357

    Article  CAS  Google Scholar 

  37. Gohar RS, Karamat N, Mumtaz S, Ahmad B, Shah A, Ashiq MN (2019) Facile synthesis of LaDySn2O7 SnSe nanocomposite with excellent photocatalytic activity under visible light. Mater Chem 229:362–371

    CAS  Google Scholar 

  38. Viet PV, Thi CM, Hieu LV (2016) The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J Nanomater 2016:4231046

  39. Ashiq MN, Irshad S, Ehsan MF, Rehman S, Farooq S, Najam-Ul-Haq M, Zia A (2017) Visible-light active tin selenide nanostructures: synthesis, characterization and photocatalytic activity. New J Chem 41(23):14689–14695

    Article  CAS  Google Scholar 

  40. Ahmad F, Hussain R, Shah A, Rahman SU (2024) Facile synthesis of SnO2– CuSe nanocomposites with enhanced visible light photocatalytic performance. Phys B Condens Matter 664:415023

    Article  Google Scholar 

  41. Sangeetha P, Sasirekha V, Ramakrishnan V (2011) Micro-Raman investigation of tin dioxide nanostructured material based on annealing effect. J Raman Spectrosc 42(8):1634–1639

    Article  CAS  Google Scholar 

  42. Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chem Mater 17(4):893–901

    Article  CAS  Google Scholar 

  43. Gong X, Wu H, Yang D, Zhang B, Peng K, Zou H, Guo L, Lu X, Chai Y, Wang G (2020) Temperature dependence of Raman scattering in single crystal SnSe. Vib Spectrosc 107:103034

    Article  CAS  Google Scholar 

  44. Huang L, Lu J, Ma D, Ma C, Zhang B, Wang H, Wang G, Gregory DH, Zhou X, Han G (2020) Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. J Mater Chem A 8(3):1394–1402

    Article  CAS  Google Scholar 

  45. Chandramohan P, Srinivasan M, Velmurugan S, Narasimhan S (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J Solid State Chem 184(1):89–96

    Article  CAS  Google Scholar 

  46. Altaf S, Ajaz H, Imran M, Ul-Hamid A, Naz M, Aqeel M, Shahzadi A, Shahbaz A, Ikram M (2020) Synthesis and characterization of binary selenides of transition metals to investigate its photocatalytic, antimicrobial and anticancer efficacy. Appl Nanosci 10(7):2113–2127

    Article  CAS  Google Scholar 

  47. Sathishkumar M, Geethalakshmi S (2020) Enhanced photocatalytic and antibacterial activity of Cu:SnO2 nanoparticles synthesized by microwave assisted method. Mater Today Proc 20:54–63

    Article  CAS  Google Scholar 

  48. Lu Y, ** R, Qiao Y, Liu W, Wang K, Wang X, Wang C (2020) Preparation of self-assembled N-Zn2GeO4 nanocomposite and their photocatalytic properties. Int J Electrochem Sci 15:10243–10252

    Article  Google Scholar 

  49. Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14(2):242

    Article  CAS  Google Scholar 

  50. Wang Q, Tian S (2014) Ning P (2014) Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind Eng Chem Res 53(2):643–649

    Article  CAS  Google Scholar 

  51. Rani A, Singh K, Patel AS, Chakraborti A, Kumar S, Ghosh K, Sharma P (2020) Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chem Phys Lett 738:136874

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the generous support from the Researchers Supporting project number (RSPD2024 R981), King Saud University, Riyadh, Saudi Arabia.

Funding

This study received funding from the Higher Education Commission of Pakistan (NRPU project 5349/Federal/NRPU/R&D/HEC/2016) and from the Researchers Supporting project number (RSPD2024 R981), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.Ayyaz contributed to the Investigation, Formal analysis, and Writing-Original draft. S.U. Rahman was involved in Supervision, Project administration, Funding acquisition, Writing - Review & Editing. A. Shah and F. Ahmad contributed to the Data Curation and Investigation. N. A. Siddiqui and A. Hussain participated in Resources, Funding acquisition and Writing - Review & Editing. R. Maryam contributed to Investigation, Validation, Formal analysis. R. Hussain was involved in Conceptualization, Methodology, Project administration, Writing - Review & Editing

Corresponding authors

Correspondence to Shams ur Rahman or Rafaqat Hussain.

Ethics declarations

Declarations

Compliance with ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyaz, M., Rahman, S.u., Shah, A. et al. Development of SnO2-SnSe composites for the efficient photocatalytic degradation of methylene blue. J Nanopart Res 26, 143 (2024). https://doi.org/10.1007/s11051-024-06052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06052-w

Keywords

Navigation