Log in

High sensitive electrochemical detection of silver nanoparticles based on a MoS2/graphene composite

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, MoS2-reduced graphene oxide (rGO) composites were prepared by a simple hydrothermal reaction and characterized by SEM, Raman, XRD, and electrochemical impedance spectroscopy (EIS). The obtained MoS2-rGO/GCE was used for electrochemical investigation of silver nanoparticles (AgNPs) by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronocoulometry (CC). It was found that the MoS2-rGO/GCE exhibited good stability and could enhance current response of AgNP electrooxidation effectively. On the basis, a new electrochemical method was developed to detect AgNPs in aqueous solution. The proposed method exhibited satisfactory analytical performance for AgNP detection with the limit of detection (LOD) as 2.63 ng/L and the linear range from 5 to 120 ng/L. The determination assays in water samples by MoS2-rGO/GCE were also discussed. The assay recoveries in water samples were obtained as 94.9–99.4%. That suggested a promising application prospect in environmental analysis.

Graphical abstract

The MoS2-rGO/GCE enhanced the electrochemical response of AgNPs, which are attributed from the Ag absorbability of MoS2 and the electrochemical signal amplification of rGO. This finding resulted in a new electrochemical approach to simple detection of AgNPs in water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvaredo J, Bayón M, Bettmer J (2013) Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Anal Chem 85:1316–1321

    Article  Google Scholar 

  • Anson FC (1966) Innovations in the study of adsorbed reactants by chronocoulometry. Anal Chem 38:54–57

    Article  CAS  Google Scholar 

  • Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85

    Article  CAS  Google Scholar 

  • Asadi M, Kumar B, Behranginia A, Rosen BA et al (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Comm 5:4470

    Article  CAS  Google Scholar 

  • Cepriá G, Córdova W, JiménezLamana J, Laborda F, Castillo JR (2014) Silver nanoparticle detection and characterization in silver colloidal products using screen printed electrodes. Anal Methods 6:3072–3078

    Article  Google Scholar 

  • Cepriá G, Pardo J, Lopez A, Peña E, Castillo JR (2016) Selectivity of Silver nanoparticle sensors: discrimination between silver nanoparticles and Ag+. Sens Actuator B 230:25–30

    Article  Google Scholar 

  • Chang B, Park S (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3:207–229

    Article  CAS  Google Scholar 

  • Chao J, Liu J, Yu S, Feng Y, Tan Z, Liu R, Yin Y (2011) Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem 83:6875–6882

    Article  CAS  Google Scholar 

  • Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods, TRAC-Trend. Anal Chem 58:79–89

    CAS  Google Scholar 

  • Cheng W, Stuart EJE, Tschulik K, Cullen JT, Compton RG (2013) A disposable sticky electrode for the detection of commercial silver NPs in seawater. Nanotechnol 24:505501

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  • David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770

    Article  CAS  Google Scholar 

  • Duan S, Huang Y (2016) Polyethylenimine-carbon nanotubes composite as an electrochemical sensing platform for silver nanoparticles. Talanta 160:607–613

    Article  CAS  Google Scholar 

  • Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotech 8:235–246

    Article  CAS  Google Scholar 

  • Goda T, Ambrosi A, Miyahara Y, Pumera M (2014) Simultaneous electrochemical detection of silver and molybdenum nanoparticles. Chemelectrochem 1:529–531

    Article  Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  • Joseph N, Shafi PM, Bose AC (2018) Metallic MoS2 anchored on reduced graphene oxide sheets with edge orientation, and its electrochemical investigation on energy storage application. ChemistrySelect 3(42):11993–12000

    Article  CAS  Google Scholar 

  • Kamila S, Mohanty B, Samantara AK (2017) Highly active 2D layered MoS2-rGO hybrids for energy conversion and storage applications. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  • Lee K, Lee K, Lee J, Ahn B, Woo S (2010) Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media. Electro Comm 12:1052–1055

    Article  CAS  Google Scholar 

  • Li W, Guo M, Zhang Y (2014) Edge-specific Au/Ag functionalization-induced conductive paths in armchair MoS2 nanoribbons. Chem Mater 26:5625–5631

    Article  CAS  Google Scholar 

  • Li XT, Batchelor-McAuley C, Compton RG (2019) Silver nanoparticle detection in real world environments via particle impact electrochemistry. ACS Sensors 4:464–470

    Article  CAS  Google Scholar 

  • Liu S, Zhang X, Shao H, Xu J, Chen F, Feng Y (2012) Preparation of MoS2 nanofibers by electrospinning. Mater Lett 73:223–225

    Article  CAS  Google Scholar 

  • Lisdat F, Schäfer DD (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  • Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, Kammer F, Larsen E (2013) Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem 405:8185–8195

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Matte H, Gomathi A, Manna A et al (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062

    Article  CAS  Google Scholar 

  • Mohan Y, Raju K, Sambasivudu K, Singh S, Sreedhar B (2017) Preparation of acacia-stabilized silver nanoparticles: a green approach. J Appl Polym Sci 106:3375–3381

    Article  Google Scholar 

  • Paramelle D, Sadovoy A, Gorelik S, Free P, Hobbley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855–4861

    Article  CAS  Google Scholar 

  • Pan L, Liu Y, **e X, Zhu X (2014) Coordination-driven hierarchical assembly of silver nanoparticles on MoS2 nanosheets for improved lithium storage. Chem-Asian J 9:1519–1524

    Article  CAS  Google Scholar 

  • Rizzello L, Pompa P (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  Google Scholar 

  • Sadik O, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716

    Article  CAS  Google Scholar 

  • Stuart E, Tschulik K, Lowinsohn D, Cullen JT, Compton RG (2014) Gold electrodes from recordable CDs for the sensitive, semi-quantitative detection of commercial silver nanoparticles in seawater media. Sens Actuator B 195:223–229

    Article  CAS  Google Scholar 

  • Uslu B, Ozkan SA (2007) Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal Lett 40:817–853

    Article  CAS  Google Scholar 

  • Vidal JC, Torrendo D, Menés S, Fuente A, Castillo JR (2020) Voltammetric sensing of silver nanoparticles on electrodes modified with selective ligands by using covalent and electropolymerization procedures. Discrimination between silver (I) and metallic silver. Microchim Acta 187:1-11

  • **e J, Zhang J, Li S, Grote F, Zhang X et al (2013) Controllable disorder engineering in oxygen-incorporated MoS2 Ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888

    Article  CAS  Google Scholar 

  • Yu S, Yin Y, Liu J (2013) Silver nanoparticles in the environment. Environ Sci Processes Impacts 15:78-92

  • Zhang S, Wright G, Yang Y (2000) Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron 15:273–282

    Article  CAS  Google Scholar 

  • Zhao J, Zhang Z, Yang S, Zheng H, Li Y (2015) Facile synthesis of MoS2 nanosheet-silver nanoparticles composite for surface enhanced Raman scattering and electrochemical activity. J Alloy Compd 559:87–91

    Article  Google Scholar 

  • Zhou Y, Rees N, Compton RG (2011) The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew Chem Int Ed 50:4219–4221

    Article  CAS  Google Scholar 

  • Zhao Y, **e X, Zhang J, Liu H, Ahn H, Sun K, Wang G (2015) MoS2 nanosheets supported on 3D graphene aerogel as a highly efficient catalyst for hydrogen evolution. Chem-Eur J 21:15908–15913

    Article  CAS  Google Scholar 

  • Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26:2344–2353

    Article  CAS  Google Scholar 

Download references

Funding

Open Foundation of Hubei Key Laboratory for Processing and Transformation of Agricultural Products (No. 2020HBSQGDKFB08), National Key Research and Development Program of China (No. 2019YFC1606000), National Natural Science Foundation of China (No. 32001772), and University Research Project of Wuhan Polytechnic University (No. 04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Duan, S., Yue, R. et al. High sensitive electrochemical detection of silver nanoparticles based on a MoS2/graphene composite. J Nanopart Res 24, 92 (2022). https://doi.org/10.1007/s11051-022-05454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05454-y

Keywords

Navigation