Log in

Patterned arrays of assembled nanoparticles prepared by interfacial assembly and femtosecond laser fabrication

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Creating shape-defined structures of inorganic nanoparticles in a maskless and template-free fashion would advance the engineering of nanoparticle-based devices and structures with desired configurations for various applications. In this work, a novel fabrication protocol combining bottom-up interfacial assembly and subtractive laser patterning was developed for creating patterned arrays of assembled nanoparticles. A solid film of magnetic nanoparticles (10 nm, monodisperse CoFe2O4) was assembled as a nanoparticle film (thickness less than 100 nm) on liquid interface under guiding field, and it was further transferred to Si substrate followed by selective material removal using femtosecond laser pulses, producing patterned arrays (typical size of 3 μm) of assembled nanoparticles. The size, shape, and arrangement of the patterned arrays were finely regulated by adjusting the laser pulse energy and laser scanning path. The magnetization behavior and magnetic anisotropy of the patterned arrays differ from those of the nanoparticle-assembled film, as reflected by the changes of coercivity and squareness along the out-of-plane direction. The presented fabrication protocol is compatible with microelectronic fabrication techniques and can be applied to various inorganic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bedanta S, Kleemann W (2008) Supermagnetism. J Phys D Appl Phys 42:013001

    Google Scholar 

  • Boles MA, Engel M, Talapin DV (2016) Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev 116:11220–11289

    CAS  Google Scholar 

  • Boyd RW (2003) Nonlinear optics, 3rd edn. Rochester, New York

    Google Scholar 

  • Catone D, Ciavardini A, Di Mario L et al (2018) Plasmon controlled sha** of metal nanoparticle aggregates by femtosecond laser-induced melting. J Phys Chem Lett 9:5002–5008

    CAS  Google Scholar 

  • Cheang UK, Kim MJ (2015) Self-assembly of robotic micro-and nanoswimmers using magnetic nanoparticles. J Nanopart Res 17:145

    Google Scholar 

  • Chiang WY, Chen JJK, Usman A et al (2019) Formation mechanism and fluorescence characterization of a transient assembly of nanoparticles generated by femtosecond laser trap**. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.9b04471

  • Dong A, Chen J, Vora PM et al (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466:474

    CAS  Google Scholar 

  • Dormann J-L, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. Adv Chem Phys 1997:283–494. https://doi.org/10.1002/9780470141571.ch4

    Article  Google Scholar 

  • Duong B, Khurshid H, Gangopadhyay P, Devkota J, Stojak K, Srikanth H, Tetard L, Norwood RA, Peyghambarian N, Phan MH, Thomas J (2014) Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays. Small 10:2840–2848

    CAS  Google Scholar 

  • Flauraud V, Mastrangeli M, Bernasconi GD et al (2017) Nanoscale topographical control of capillary assembly of nanoparticles. Nat Nanotechnol 12:73

    CAS  Google Scholar 

  • Fleutot S, Nealon GL, Pauly M, Pichon BP, Leuvrey C, Drillon M, Gallani JL, Guillon D, Donnio B, Begin-Colin S (2013) Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders. Nanoscale 5:1507–1516

    CAS  Google Scholar 

  • Gamaly EG, Rode AV, Luther-Davies B et al (2002) Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9:949–957

    CAS  Google Scholar 

  • Gassensmith JJ, Erne PM, Paxton WF, Frasconi M, Donakowski MD, Stoddart JF (2013) Patterned assembly of quantum dots onto surfaces modified with click microcontact printing. Adv Mater 25:223–226

    CAS  Google Scholar 

  • Gruzdev V, Komolov V, Li H et al (2011) Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses. Proc SPIE 7996:79960J

    Google Scholar 

  • Held G, Grinstein G, Doyle H et al (2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys Rev B 64:012408

    Google Scholar 

  • Ionin AA, Kudryashov SI, Makarov SV et al (2014) Structural and electrical characteristics of a hyperdoped silicon surface layer with deep donor sulfur states. JETP Lett 100:55–58

    CAS  Google Scholar 

  • Jiang C, Chan PH, Leung CW et al (2017a) CoFe2O4 nanoparticle-integrated spin-valve thin films prepared by interfacial self-assembly. J Phys Chem C 121:22508–22516

    CAS  Google Scholar 

  • Jiang C, Ng SM, Leung CW et al (2017b) Magnetically assembled iron oxide nanoparticle coatings and their integration with pseudo-spin-valve thin films. J Mater Chem C 5:252–263

    CAS  Google Scholar 

  • Jie Y, Niskala JR, Johnston-Peck AC et al (2012) Laterally patterned magnetic nanoparticles. J Mater Chem 22:1962–1968

    CAS  Google Scholar 

  • Kang B, Han S, Kim J et al (2011) One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J Phys Chem C 115:23664–23670

    CAS  Google Scholar 

  • Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. Chem Phys Chem 9:20–42

    CAS  Google Scholar 

  • Kudryashov SI, Nguyen LV, Kirilenko DA et al (2018) Large-scale laser fabrication of antifouling silicon-surface nanosheet arrays via nanoplasmonic ablative self-organization in liquid CS2 tracked by a sulfur dopant. ACS Appl Nano Mater 1:2461–2468

    CAS  Google Scholar 

  • Lan S, Wu X, Zhang G et al (2019) Improvement of device performance of organic photovoltaics via laser irradiation. J Phys Chem C 123:22058–22065

    CAS  Google Scholar 

  • Lee D, Paeng D, Park HK, Grigoropoulos CP (2014) Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS Nano 8:9807–9814

    CAS  Google Scholar 

  • Lee YH, Lay CL, Shi W et al (2018) Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles. Nat Commun 9:2769

    Google Scholar 

  • Liao C, Anderson W, Antaw F et al (2018) Maskless 3D ablation of precise microhole structures in plastics using femtosecond laser pulses. ACS Appl Mater Interfaces 10:4315–4323

    CAS  Google Scholar 

  • Lin CH, Zeng Q, Lafalce E et al (2018) Large-area lasing and multicolor perovskite quantum dot patterns. Adv Opt Mater 6:1800474

    Google Scholar 

  • Luft A, Franz U, Emsermann L et al (1996) A study of thermal and mechanical effects on materials induced by pulsed laser drilling. Appl Phys A Mater Sci Process 63:93–101

    Google Scholar 

  • Mahajan A, Frisbie CD, Francis LF (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864

    CAS  Google Scholar 

  • Majetich S, Sachan M (2006) Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J Phys D Appl Phys 39:R407

    CAS  Google Scholar 

  • McKenna KP, Hofer F, Gilks D et al (2014) Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4. Nat Commun 5:5740

    CAS  Google Scholar 

  • Oberdick SD, Majetich SA (2013) Electrophoretic deposition of iron oxide nanoparticles on templates. J Phys Chem C 117:18709–18718

    CAS  Google Scholar 

  • O’Brien MN, Lin H-X, Girard M et al (2016) Programming colloidal crystal habit with anisotropic nanoparticle building blocks and DNA bonds. J Am Chem Soc 138:14562–14565

    Google Scholar 

  • Okamoto T, Nakamura T, Sakota K, Yatsuhashi T (2019) Synthesis of single-nanometer-sized gold nanoparticles in liquid–liquid dispersion system by femtosecond laser irradiation. Langmuir 35:12123–12129

    CAS  Google Scholar 

  • Paik T, Yun H, Fleury B, Hong SH, Jo PS, Wu Y, Oh SJ, Cargnello M, Yang H, Murray CB, Kagan CR (2017) Hierarchical materials design by pattern transfer printing of self-assembled binary nanocrystal superlattices. Nano Lett 17:1387–1394

    CAS  Google Scholar 

  • Palombo M, Gabrielli A, Servedio V et al (2013) Structural disorder and anomalous diffusion in random packing of spheres. Sci Rep 3:2631

    CAS  Google Scholar 

  • Pauly M, Pichon BP, Panissod P et al (2012) Size dependent dipolar interactions in iron oxide nanoparticle monolayer and multilayer Langmuir–Blodgett films. J Mater Chem 22:6343–6350

    CAS  Google Scholar 

  • Pichon BP, Leuvey C, Ihawakrim D et al (2014) Magnetic properties of mono-and multilayer assemblies of iron oxide nanoparticles promoted by SAMs. J Phys Chem C 118:3828–3837

    CAS  Google Scholar 

  • Polavarapu L, Liz-Marzán LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300

    CAS  Google Scholar 

  • Shen M, Carey JE, Crouch CH, Kandyla M, Stone HA, Mazur E (2008) High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. Nano Lett 8:2087–2091

    CAS  Google Scholar 

  • Son Y, Yeo J, Moon H, Lim TW, Hong S, Nam KH, Yoo S, Grigoropoulos CP, Yang DY, Ko SH (2011) Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater 23:3176–3181

    CAS  Google Scholar 

  • Song Q, Ding Y, Wang ZL, Zhang ZJ (2006) Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies. J Phys Chem B 110:25547–25550

    CAS  Google Scholar 

  • Stratakis E, Barberoglou M, Fotakis C, Viau G, Garcia C, Shafeev GA (2009) Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt Express 17:12650–12659

    CAS  Google Scholar 

  • Tao AR, Huang J, Yang P (2008) Langmuir−Blodgettry of nanocrystals and nanowires. Acc Chem Res 41:1662–1673

    CAS  Google Scholar 

  • Tian Y, Wang T, Liu W et al (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat Nanotechnol 10:637

    CAS  Google Scholar 

  • Toulemon D, Liu Y, Cattoën X, Leuvrey C, Bégin-Colin S, Pichon BP (2016a) Enhanced collective magnetic properties in 2D monolayers of iron oxide nanoparticles favored by local order and local 1D shape anisotropy. Langmuir 32:1621–1628

    CAS  Google Scholar 

  • Toulemon D, Rastei MV, Schmool D (2016b) Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains. Adv Funct Mater 26:2454–2462

    CAS  Google Scholar 

  • Wang X, Pu J, An B et al (2018) Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Adv Mater 30:1705968

    Google Scholar 

  • Wang J-P (2008) FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE 96:1847–1863

    CAS  Google Scholar 

  • Wen T, Li Y, Zhang D, Zhan Q, Wen Q, Liao Y, **e Y, Zhang H, Liu C, ** L, Liu Y, Zhou T, Zhong Z (2017) Manipulate the magnetic anisotropy of nanoparticle assemblies in arrays. J Colloid Interface Sci 497:14–22

    CAS  Google Scholar 

  • Wen T, Liang W, Krishnan KM (2010) Coupling of blocking and melting in cobalt ferrofluids. J Appl Phys 107:09B501. https://doi.org/10.1063/1.3350901

    Article  CAS  Google Scholar 

  • Wen T, Majetich SA (2011) Ultra-large-area self-assembled monolayers of nanoparticles. ACS Nano 5:8868–8876

    CAS  Google Scholar 

  • Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q, Yang Q, Bai F, Zhong Z (2015) Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. Nanoscale 7:4906–4911

    CAS  Google Scholar 

  • Wernsdorfer W (2001) Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. Adv Chem Phys 118:99–190

    CAS  Google Scholar 

  • Wu L, Dong Z, Kuang M et al (2015) Printing patterned fine 3D structures by manipulating the three phase contact line. Adv Funct Mater 25:2237–2242

    CAS  Google Scholar 

  • You M, Zhong J, Hong Y, Duan Z, Lin M, Xu F (2015) Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale 7:4423–4431

    CAS  Google Scholar 

  • Zhang J, Boyd C, Luo W (1996) Two mechanisms and a scaling relation for dynamics in ferrofluids. Phys Rev Lett 77:390

    CAS  Google Scholar 

  • Zhang Y, Zhang F, Yan Z et al (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2:17019

    CAS  Google Scholar 

  • Zuo P, Jiang L, Li X et al (2019) Maskless micro/nanopatterning and bipolar electrical-rectification of MoS2 flakes through femtosecond laser direct writing. ACS Appl Mater Interfaces 11:39334–39341

    CAS  Google Scholar 

Download references

Funding

This work was supported by “Nanotechnology Platform Program” sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. PWP acknowledges support from ITF Tier 3 funding (ITS/203/14, ITS/104/13, ITS/214/14), RGC-GRF grant (HKU 17210014, HKU 17204617), and UGC Hong Kong (contract no. AoE/P-04/08).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Philip W. T. Pong or Takeshi Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Oshima, D., Iwata, S. et al. Patterned arrays of assembled nanoparticles prepared by interfacial assembly and femtosecond laser fabrication. J Nanopart Res 22, 1 (2020). https://doi.org/10.1007/s11051-019-4718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4718-8

Keywords

Navigation