Log in

Facile fabrication of PtNi alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Development of high-performance electrocatalysts in basic electrolyte is of significance for the decrease in unnecessary energy consumption for production of hydrogen. Herein, we have demonstrated one-step chemical reduction strategy to fabricate platinum–nickel alloy nanoparticle–supported reduced graphene oxide (rGO) as excellent electrocatalysts for hydrogen evolution reaction (HER) in basic condition. Graphene-supported alloy nanocatalysts are achieved by simply controlling the molar ratios of bimetallic precursors. We confirm that nickel species on the surface of as-synthesized nanocatalysts tend to be oxidized as nickel hydroxide during the fabrication. Our nanocatalysts synthesized at the equivalent molar ratios of platinum and nickel salts exhibit much higher electrocatalytic activity for HER than the commercial Pt/C and graphene-supported Pt counterparts in same conditions. The performance improvement is not only attributed to nickel hydroxide layer on our nanocatalysts facilitating the decomposition of water in basic media but also ascribed to the partial replacement of Pt atoms by Ni ones decreasing the Pt–H bond energy and improving desorption of hydrogen atoms on Pt–Ni alloy nanocatalysts. Furthermore, our nanocatalysts present excellent HER catalytic stability. Our results will provide a facile and effective strategy on the development of the excellent Pt-containing composite nanocatalysts for applications in electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bao X, Wang J, Lian X, ** H, Wang S, Wang Y (2017) Ni/nitrogen-doped graphene nanotubes acted as a valuable tailor for remarkably enhanced hydrogen evolution performance of platinum-based catalysts. J Mater Chem A 5:16249–16254

    Article  CAS  Google Scholar 

  • Bian J, Lan F, Wang Y, Ren K, Zhao S, Li W, Chen Z, Li J, Guan J (2018) Facile morphology-controlled synthesis of nickel-coated graphite core-shell particles for excellent conducting performance of polymer-matrix composites and enhanced catalytic reduction of 4-nitrophenol. Nanotechnology 29:145602

    Article  Google Scholar 

  • Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  • Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, ALFaYS H (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113:1109–1125

    Article  CAS  Google Scholar 

  • Chen C, Kang Y, Huo Z, Zhu Z, Huang W, **n HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  • Chen Y, Chen Y, Yu G, Chen W, Liu Y, Li GD, Zhu P, Tao Q, Li Q, Liu J, Shen X, Li H, Huang X, Wang D, Asefa T, Zou X (2017) Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J Am Chem Soc 139:12370–12373

    Article  CAS  Google Scholar 

  • Choi SI, **e S, Shao M, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park J, **a X, Wang J, Kim MJ, **a Y (2013) Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett 13:3420–3425

    Article  CAS  Google Scholar 

  • Choi S-I, Shao M, Lu N, Ruditskiy A, Peng H, Park J, Guerrero S, Wang J, Kim M, **a Y (2014) Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction. ACS Nano 8:10363–10371

    Article  CAS  Google Scholar 

  • Darabdhara G, Amin MA, Mersal GAM, Ahmed EM, Das MR, Zakaria MB, Malgras V, Alshehri SM, Yamauchi Y, Szunerits S, Boukherroub R (2015) Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. J Mater Chem A 3:20254–20266

    Article  CAS  Google Scholar 

  • Fan X, Zhang G, Zhang F (2015) Multiple roles of graphene in heterogeneous catalysis. Chem Soc Rev 44:3023–3035

    Article  CAS  Google Scholar 

  • Fang Z, Hao Z, Dong Q, Cui Y (2018) Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction. J Nanopart Res 20:106

    Article  Google Scholar 

  • Fernández A, Arzac GM, Vogt UF, Hosoglu F, Borgschulte A, Jiménez de Haro MC, Montes O, Züttel A (2016) Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Appl Catal B Environ 180:336–343

    Article  Google Scholar 

  • Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242

    Article  CAS  Google Scholar 

  • Hao Z, Yang S, Niu J, Fang Z, Liu L, Dong Q, Song S, Zhao Y (2018) A bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chem Sci 9:5640–5645

    Article  CAS  Google Scholar 

  • He T, Kreidler E, **ong L, Ding E (2007) Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J Power Sources 165:87–91

    Article  CAS  Google Scholar 

  • Hu C, Cao Y, Yang L, Bai Z, Guo Y, Wang K, Xu P, Zhou J (2011) Preparation of highly dispersed Pt-SnOX nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation. Appl Surf Sci 257:7968–7974

    Article  CAS  Google Scholar 

  • Hu Y, Wu P, Yin Y, Zhang H, Cai C (2012) Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal B Environ 111-112:208–217

    Article  CAS  Google Scholar 

  • Kavian R, Choi S-I, Park J, Liu T, Peng HC, Lu N, Wang J, Kim MJ, **a Y, Lee SW (2016) Pt–Ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte. J Mater Chem A 4:12392–12397

    Article  CAS  Google Scholar 

  • Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567

    Article  CAS  Google Scholar 

  • Konopka DA, Li M, Artyushkova K, Marinkovic N, Sasaki K, Adzic R, Ward TL, Atanassov P (2011) Platinum supported on NbRuyOz as electrocatalyst for ethanol oxidation in acid and alkaline fuel cells. J Phys Chem C 115:3043–3056

    Article  CAS  Google Scholar 

  • Kou R, Shao Y, Mei D, Nie Z, Wang D, Wang C, Viswanathan VV, Park S, Aksay IA, Lin Y, Wang Y, Liu J (2011) Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points. J Am Chem Soc 133:2541–2547

    Article  CAS  Google Scholar 

  • Kwon S, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702

    Article  CAS  Google Scholar 

  • Li L, Wu Y, Lu J, Nan C, Li Y (2013a) Synthesis of Pt-Ni/graphene via in situ reduction and its enhanced catalyst activity for methanol oxidation. Chem Commun 49:7486–7488

    Article  CAS  Google Scholar 

  • Li F, Guo Y, Li R, Wu F, Liu Y, Sun X, Li C, Wang W, Gao J (2013b) A facile method to synthesize supported Pd–Au nanoparticles using graphene oxide as the reductant and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Mater Chem A 1:6579–6587

    Article  CAS  Google Scholar 

  • Li SS, Lv JJ, Hu YY, Zheng JN, Chen JR, Wang AJ, Feng JJ (2014) Facile synthesis of porous Pt–Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation. J Power Sources 247:213–218

    Article  CAS  Google Scholar 

  • Li J, Zhou P, Li F, Ren R, Liu Y, Niu J, Ma J, Zhang X, Tian M, ** J, Ma J (2015) Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. J Mater Chem A 3:11261–11268

    Article  CAS  Google Scholar 

  • Liu L, Guan J, Shi W, Sun Z, Zhao J (2010) Facile synthesis and growth mechanism of flowerlike Ni-Fe alloy nanostructures. J Phys Chem C 114:13565–13570

    Article  CAS  Google Scholar 

  • Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed 54:10752–10757

    Article  CAS  Google Scholar 

  • Liu L, Chen R, Liu W, Wu J, Gao D (2016) Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J Hazard Mater 320:96–104

    Article  CAS  Google Scholar 

  • Liu Y, Li Q, Si R, Li G, Li W, Liu D, Wang D, Sun L, Zhang Y, Zou X (2017) Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv Mater 29:1606200

    Article  Google Scholar 

  • Liu Y, Liang X, Gu L, Zhang Y, Li G, Zou X, Chen J (2018) Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun 9:2609

    Article  Google Scholar 

  • Loukrakpam R, Luo J, He T, Chen Y, Xu Z, Njoki PN, Wanjala BN, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong C (2011) Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J Phys Chem C 115:1682–1694

    Article  CAS  Google Scholar 

  • Lu Y, Jiang Y, Wu H, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO strip**–cleaning. J Phys Chem C 117:2926–2938

    Article  CAS  Google Scholar 

  • Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL, Cruz-Silva R, Gutierrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  Google Scholar 

  • Mezzavilla S, Baldizzone C, Swertz AC, Hodnik N, Pizzutilo E, Polymeros G, Keeley GP, Knossalla J, Heggen M, Mayrhofer KJJ, Schüth F (2016) Structure–activity–stability relationships for space-confined PtxNiy nanoparticles in the oxygen reduction reaction. ACS Catal 6:8058–8068

    Article  CAS  Google Scholar 

  • Parra RE, Cable JW (1980) Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys Rev B 21:5494–5504

    Article  CAS  Google Scholar 

  • Pylypenko S, Borisevich A, More KL, Corpuz AR, Holme T, Dameron AA, Olson TS, Dinh HN, Gennett T, O’Hayre R (2013) Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. Energy Environ Sci 6:2957

    Article  CAS  Google Scholar 

  • Sahoo PK, Panigrahy B, Bahadur D (2014) Facile synthesis of reduced graphene oxide/Pt–Ni nanocatalysts: their magnetic and catalytic properties. RSC Adv 4:48563–48571

    Article  CAS  Google Scholar 

  • Shi YC, Chen SS, Feng JJ, ** WW, Jun WA (2018) Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Appl Surf Sci 441:438–447

    Article  CAS  Google Scholar 

  • Su S, Zhang C, Yuwen L, Liu X, Wang L, Fan C, Wang L (2016) Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale 8:602–608

    Article  CAS  Google Scholar 

  • Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256–1260

    Article  CAS  Google Scholar 

  • Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  CAS  Google Scholar 

  • Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  • Wang ZB, Zhao CR, Shi PF, Yang YS, Yu ZB, Wang WK, Yin GP (2010) Effect of a carbon support containing large mesopores on the performance of a Pt-Ru-Ni/C catalyst for direct methanol fuel cells. J Phys Chem C 114:672–677

    Article  CAS  Google Scholar 

  • Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    Article  CAS  Google Scholar 

  • Wang Y, Wen J, Zhao S, Chen Z, Ren K, Sun J, Guan J (2015) Surface thiolation of Al microspheres to deposite thin and compact Ag shells for high conductivity. Langmuir 31:13441–13451

    Article  CAS  Google Scholar 

  • Wang Y, Luo S, Ren K, Zhao S, Chen Z, Li W, Guan J (2016) Facile preparation of graphite particles fully coated with thin Ag shell layers for high performance conducting and electromagnetic shielding composite materials. J Mater Chem C 4:2566–2578

    Article  CAS  Google Scholar 

  • Wang Y, Ren K, Sun J, Li W, Zhao S, Chen Z, Guan J (2017) Ultralow content silver densely-coated glass microsphere for high performance conducting polymer-matrix composites. Compos Sci Technol 140:89–98

    Article  Google Scholar 

  • Wu X, Fan Z, Ling X, Wu S, Chen X, Hu X, Zhuang N, Chen J (2018) Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure. J Nanopart Res 20:156

    Article  CAS  Google Scholar 

  • Xu Y, Li Y, Yin S, Yu H, Xue H, Li X, Wang H, Wang L (2018) Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 29:225403

    Article  Google Scholar 

  • Yang YW, Feng G, Lu ZH, Hu N, Zhang F, Chen XS (2014) In situ synthesis of reduced graphene oxide supported Co nanoparticles as efficient catalysts for hydrogen generation from NH3BH3. Acta Phys-Chim Sin 30:1180–1186

    CAS  Google Scholar 

  • Yang H, Wang C, Hu F, Zhang Y, Lu H, Wang Q (2017) Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci China Mater 60:1121–1128

    Article  CAS  Google Scholar 

  • Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430

    Article  CAS  Google Scholar 

  • Yu X, Manthiram A (2018) Scalable membraneless direct liquid fuel cells based on a catalyst-selective strategy. Energ Environ Mater 1:13–19

    Article  Google Scholar 

  • Zhang W, Lai W, Cao R (2017a) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117:3717–3797

    Article  CAS  Google Scholar 

  • Zhang T, Li SC, Zhu W, Zhang ZP, Gu J, Zhang YW (2017b) Shape-tunable Pt-Ir alloy nanocatalysts with high performance in oxygen electrode reactions. Nanoscale 9:1154–1165

    Article  CAS  Google Scholar 

  • Zhang R, El-Refaei SM, Russo PA, Pinna N (2018a) Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions. J Nanopart Res 20:146

    Article  Google Scholar 

  • Zhang P, Li Z, Zhang S, Shao G (2018b) Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energ Environ Mater 1:5–12

    Article  Google Scholar 

  • Zhao F, Kong W, Hu Z, Liu J, Zhao Y, Zhang B (2016) Tuning the performance of Pt–Ni alloy/reduced graphene oxide catalysts for 4-nitrophenol reduction. RSC Adv 6:79028–79036

    Article  CAS  Google Scholar 

  • Zhu CR, Gao D, Ding J, Chao D, Wang J (2018) TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem Soc Rev 47:4332–4356

    Article  CAS  Google Scholar 

  • Zou X, Liu Y, Li GD, Wu Y, Liu DP, Li W, Li HW, Wang D, Zhang Y, Zou X (2017) Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater 29:1700404

    Article  Google Scholar 

  • Zou X, Wu Y, Liu Y, Liu D, Li W, Gu L, Liu H, Wang P, Sun L, Zhang Y (2018) In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4:1139–1152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (51672205), the Fundamental Research Funds for the Central Universities (WUT: 2018-IB-026), and Open Project of State Key Laboratory of Supramolecular Structure and Materials (sklssm201823).

Author information

Authors and Affiliations

Authors

Contributions

Zuokai Du performed most experiments and collected and analyzed data in the original manuscript. Yilong Wang and **** Liu participated in the design of this work. Junsheng Li is listed as one of coauthors, as he did some experiments and the related characterization of the as-synthesized nanocatalysts for this revised manuscript. Manuscript was written by Yilong Wang, and critically reviewed by **** Liu. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yilong Wang or **** Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Wang, Y., Li, J. et al. Facile fabrication of PtNi alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment. J Nanopart Res 21, 13 (2019). https://doi.org/10.1007/s11051-018-4436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4436-7

Keywords

Navigation