Log in

Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CdSe nanowires are popular building blocks for many optoelectronic devices mainly owing to their direct band gap in the visible range of the spectrum. Here we investigate the optoelectronic properties of single CdSe nanowires fabricated by colloidal synthesis, in terms of their photocurrent–voltage characteristics and photoconductivity spectra recorded at 300 and 18 K. The photocurrent is identified as the secondary photocurrent, which gives rise to a photoconductive gain of ~35. We observe a saturation of the photocurrent beyond a certain voltage bias that can be related to the finite drift velocity of electrons. From the photoconductivity spectra, we determine the band gap energy of the nanowires as ~1.728 eV, and we resolve low-energy peaks that can be associated with sub-bandgap states.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker BG, Johnson BB, Maire GLC (1971) Photoelectric work function measurements on nickel crystals and films. Surf Sci 24:572–586. doi:10.1016/0039-6028(71)90282-2

    Article  Google Scholar 

  • Basu PK (1997) Theory of optical processes in semiconductors: bulk and microstructures. Series on semiconductor science and technology, vol 4. Oxford University Press, Oxford

    Google Scholar 

  • Chakraborty R, Greullet F, George C, Baranov D, Di Fabrizio E, Krahne R (2013) Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires. Nanoscale 5:5334–5340. doi:10.1039/c3nr00752a

    Article  Google Scholar 

  • Choi H, Kuno M, Hartland GV, Kamat PV (2013) CdSe nanowire solar cells using carbazole as a surface modifier. J Mater Chem A 1:5487–5491. doi:10.1039/C3TA10387K

    Article  Google Scholar 

  • Dasgupta NP et al (2014) 25th anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv Mater 26:2137–2184. doi:10.1002/adma.201305929

    Article  Google Scholar 

  • Fasoli A, Colli A, Martelli F, Pisana S, Tan P, Ferrari A (2011) Photoluminescence of CdSe nanowires grown with and without metal catalyst. Nano Res 4:343–359. doi:10.1007/s12274-010-0089-2

    Article  Google Scholar 

  • Geyer S, Porter VJ, Halpert JE, Mentzel TS, Kastner MA, Bawendi MG (2010) Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys Rev B 82:155201

    Article  Google Scholar 

  • Guo F, Yang B, Yuan Y, **ao Z, Dong Q, Bi Y, Huang J (2012) A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat Nano 7:798–802. doi:http://www.nature.com/nnano/journal/v7/n12/abs/nnano.2012.187.html#supplementary-information

  • Leatherdale CA, Kagan CR, Morgan NY, Empedocles SA, Kastner MA, Bawendi MG (2000) Photoconductivity in CdSe quantum dot solids. Phys Rev B 62:2669–2680

    Article  Google Scholar 

  • Li Y, Qian F, **ang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater Today 9:18–27. doi:10.1016/S1369-7021(06)71650-9

    Article  Google Scholar 

  • Li J et al (2013) Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Adv Mater 25:833–837. doi:10.1002/adma.201203692

    Article  Google Scholar 

  • Mark P, Helfrich W (1962) Space-charge-limited currents in organic crystals. J Appl Phys 33:205–215. doi:10.1063/1.1728487

    Article  Google Scholar 

  • Mishra US, Jasprit (2007) Semiconductor device physics and design. Technology and Engineering, Springer, Dordrecht

    Google Scholar 

  • Myalitsin A, Strelow C, Wang Z, Li Z, Kipp T, Mews A (2011) Diameter scaling of the optical band gap in individual CdSe nanowires. ACS Nano 5:7920–7927. doi:10.1021/nn202199f

    Article  Google Scholar 

  • Ninomiya S, Adachi S (1995) Optical properties of cubic and hexagonal CdSe. J Appl Phys 78:4681–4689. doi:10.1063/1.359815

    Article  Google Scholar 

  • Park J-Y et al (2004) Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4:517–520. doi:10.1021/nl035258c

    Article  Google Scholar 

  • Rode DL (1970) Electron mobility in II–VI semiconductors. Phys Rev B 2:4036–4044

    Article  Google Scholar 

  • Semiconductors and semimetals (1984) vol 21B, 1st edn. ACADEMIC PRESS INC., Orlando

    Google Scholar 

  • Shan CX, Liu Z, Hark SK (2006) Photoluminescence polarization in individual CdSe nanowires. Phys Rev B 74:153402

  • Singh A, Li X, Protasenko V, Galantai G, Kuno M, **ng H, Jena D (2007) Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett 7:2999–3006. doi:10.1021/nl0713023

    Article  Google Scholar 

  • Swank RK (1967) Surface properties of II–VI compounds. Phys Rev 153:844–849

    Article  Google Scholar 

  • Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley-Interscience, Hoboken, N.J.

    Google Scholar 

  • Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154. doi:10.1016/0031-8914(67)90062-6

    Article  Google Scholar 

  • Vietmeyer F, Frantsuzov PA, Janko B, Kuno M (2011) Carrier recombination dynamics in individual CdSe nanowires. Phys Rev B 83:115319

    Article  Google Scholar 

  • Vietmeyer F, Tchelidze T, Tsou V, Janko B, Kuno M (2012) Electric field-induced emission enhancement and modulation in individual CdSe nanowires. ACS Nano 6:9133–9140. doi:10.1021/nn3033997

    Article  Google Scholar 

  • Wang G et al (2012) Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity. Opt Express 20:29472–29478. doi:10.1364/OE.20.029472

    Article  Google Scholar 

  • Wang X, Song W, Liu B, Chen G, Chen D, Zhou C, Shen G (2013) High-performance organic–inorganic hybrid photodetectors based on p3ht: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Mater 23:1202–1209. doi:10.1002/adfm.201201786

    Article  Google Scholar 

  • Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944

    Article  Google Scholar 

  • Yu Y, Kamat PV, Kuno M (2010) A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Adv Funct Mater 20:1464–1472. doi:10.1002/adfm.200902372

    Article  Google Scholar 

  • Zhang Y, Miszta K, Manna L, Di Fabrizio E, Krahne R (2013) Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals. Nanoscale 5:7596–7600. doi:10.1039/C3NR01588B

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank M. Leoncini for his assistance in the metal evaporation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Roman Krahne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chakraborty, R., Kudera, S. et al. Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction. J Nanopart Res 17, 443 (2015). https://doi.org/10.1007/s11051-015-3244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3244-6

Keywords

Navigation