Log in

In vitro toxicity of zinc oxide nanoparticles: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MK, AlSalhi MS, Alrokayan SA (2011) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine UK 7(6):904–913

    Article  Google Scholar 

  • Amrita M, Suraj Kumar T, Rizwan W, Song-Hoon J, Inho H, You-Bing Y, Young-Soon K, Hyung-Shik S, Soon-Il Y (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92(3):617–630

    Article  Google Scholar 

  • Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC, Alencar AM, Kasahara DI, Ericsson T, Millet EJ, Swenson J, Tschumperlin DJ, Butler JP, Brain JD, Fredberg JJ, Gehr P, Zhou EH (2010) Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J R Soc Interface 7(3):S331–S340

    Article  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  Google Scholar 

  • Buerki-Thurnherr T, **ao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, Grieder K, Wampfler B, Mathur S, Wick P, Krug HF (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7(4):402–416

    Article  Google Scholar 

  • Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K (2012) Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6(1):22–35

    Article  Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246(3):116–127

    Article  Google Scholar 

  • Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101

    Article  Google Scholar 

  • George S, Pokhrel S, **. ACS Nano 4(1):15–29

    Article  Google Scholar 

  • Gerloff K, Albrecht C, Boots AW, Förster I, Schins RP (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3(4):355–364

    Article  Google Scholar 

  • Hackenberg S, Zimmermann FZ, Scherzed A, Friehs G, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011) Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen 52(7):582–589

    Article  Google Scholar 

  • Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420

    Article  Google Scholar 

  • Heng BC, Zhao X, **ong S, Ng KW, Boey FY, Loo JS (2011) Cytotoxicity of zinc oxide (ZnO) nanoparticles is in influenced by cell density and culture format. Arch Toxicol 85:695–704

    Article  Google Scholar 

  • Hsiao IL, Huang YJ (2011a) Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. Chem Res Toxicol 24(3):303–313

    Article  Google Scholar 

  • Hsiao IL, Huang YJ (2011b) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO(2) nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228

    Article  Google Scholar 

  • Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55

    Article  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(12):2699–2711

    Article  Google Scholar 

  • Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125(2):462–472

    Article  Google Scholar 

  • Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicová D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, Stone V (2013) In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, proinflammatory cytokines and functional markers. Nanotoxicology 7(3):301–313

    Article  Google Scholar 

  • Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182(11):1398–1409

    Article  Google Scholar 

  • Kocbek P, Teskac K, Kreft ME, Kristl J (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6(17):1908–1917

    Article  Google Scholar 

  • Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schulte S, Wohlleben W, Oesch F (2010) Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4:364–381

    Article  Google Scholar 

  • Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, Schulz H, Ferron GA, Schmid O (2009) A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol 6:32

    Article  Google Scholar 

  • Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003

    Article  Google Scholar 

  • Meyer K, Rajanahalli P, Ahamed M, Rowe JJ, Hong Y (2011) ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol In Vitro 25(8):1721–1726

    Article  Google Scholar 

  • Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23(4):733–739

    Article  Google Scholar 

  • Moos PJ, Olszewski K, Honeggar M, Cassidy P, Leachman S, Woessner D, Cutler NS, Veranth JM (2011) Responses of human cells to ZnO nanoparticles: a gene transcription study. Metallomics 3(11):1199–1211

    Article  Google Scholar 

  • Müller KH, Kulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE (2010) pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4(11):6767–6779

    Article  Google Scholar 

  • Muthuraman P, Ramkumar K, Kim DH (2014a) Analysis of dose-dependent effect of Zinc oxide nanoparticles on the oxidative stress and anti-oxidant enzyme activity in adipocytes. Appl Biochem Biotechnol. doi:10.1007/s12010-014-1231-5

    Google Scholar 

  • Muthuraman P, Muthuviveganandavel V, Kim DH (2014b) Cytotoxicity of Zinc oxide nanoparticles on anti-oxidant enzyme activities and mRNA expression in the co-cultured C2C12 and 3T3-L1 Cells. Appl Biochem Biotechnol. doi:10.1007/s12010-014-1351-y

    Google Scholar 

  • Nagarajan P, Rajagopalan V (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 9:035004

    Article  Google Scholar 

  • Ng KW, Khoo SP, Heng BC, Setyawati MI, Tan EC, Zhao X, **ong S, Fang W, Leong DT, Loo JS (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32(32):8218–8225

    Article  Google Scholar 

  • Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D (2010) Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine UK 5(8):1193–1203

    Article  Google Scholar 

  • Osmond MJ, McCall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4(1):15–41

    Article  Google Scholar 

  • Palomäki J, Karisola P, Pylkkänen L, Savolainen K, Alenius H (2010) Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267(1–3):125–131

    Article  Google Scholar 

  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B (2010) Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79(1):113–116

    Article  Google Scholar 

  • Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10

    Article  Google Scholar 

  • Qun L, Shui-Lin C, Wan-Chao J (2007) Durability of nano ZnO antibacterial cotton fabric to sweat. J Appl Polym Sci 103:412–416

    Article  Google Scholar 

  • Rob JV, Wim HJ (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    Google Scholar 

  • Shah MA, Al-Shahry M (2009) Zinc oxide nanoparticles prepared by the reaction of zinc metal with ethanol. JKAU: Sci 21(1):61–67

    Article  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218

    Article  Google Scholar 

  • Sharma V, Singh SK, Anderson D, Tobin DJ, Dhawan A (2011) Zinc oxide nanoparticles induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechnol 11(5):3782–3788

    Article  Google Scholar 

  • Snyder-Talkington N, Qian Y, Castranova V, Guo NL (2012) New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of co-culture and bioinformatics. J Toxicol Environ Health B 15:468–492

    Article  Google Scholar 

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199(3):389–397

    Article  Google Scholar 

  • Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H (2011) Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol Toxicol 27(5):333–342

    Article  Google Scholar 

  • Taccola L, Raffa V, Riggio C, Vittorio O, Iorio MC, Vanacore R, Pietrabissa A, Cuschieri A (2011) Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomed 6:1129–1140

    Google Scholar 

  • Umrani DR, Paknikar KM (2014) Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Types-1 and 2 diabetic rats. Nanomedicine 9(1):89–104

    Article  Google Scholar 

  • Valdiglesias V, Costa C, Kiliç G, Costa S, Pásaro E, Laffon B, Teixeira JP (2013) Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 55:92–100

    Article  Google Scholar 

  • Wang Y, Aker WG, Hwang HM, Yedjou CG, Yu H, Tchounwou PB (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409(22):4753–4762

  • Wu W, Samet JM, Peden DB, Bromberg PA (2010) Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Environ Health Perspect 118(7):982–987

    Article  Google Scholar 

  • **a T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, ** Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78

    Article  Google Scholar 

  • Yang ST, Liu JH, Wang J, Yuan Y, Cao A, Wang H, Liu Y, Zhao Y (2010) Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. J Nanosci Nanotechnol 10(12):8638–8645

    Article  Google Scholar 

  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci USA 107(45):19449–19454

    Article  Google Scholar 

  • Yin H, Casey PS, McCall MJ (2010) Surface modifications of ZnO nanoparticles and their cytotoxicity. J Nanosci Nanotechnol 10(11):7565–7570

    Article  Google Scholar 

  • Yoshida R, Kitamura D, Maenosono S (2009) Mutagenicity of water-soluble ZnO nanoparticles in Ames test. J Toxicol Sci 34(1):119–122

    Article  Google Scholar 

  • Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, **a XH (2010) Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloid Surf B 76(1):145–150

    Article  Google Scholar 

  • Zabirnyk O, Yezhelyev M, Seleverstov O (2007) Nanoparticles as a novel class of autophagy activators. Autophagy 3(3):278–281

    Article  Google Scholar 

  • Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B 14:593–632

    Article  Google Scholar 

Download references

Acknowledgments

This paper work was supported by KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, M., Kim, D.H. In vitro toxicity of zinc oxide nanoparticles: a review. J Nanopart Res 17, 158 (2015). https://doi.org/10.1007/s11051-015-2958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2958-9

Keywords

Navigation