Log in

Augmented Lagrangian index-3 semi-recursive formulations with projections

Kinematics and dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

MBSLIM (Multibody Systems at Laboratorio de Ingenieria Mecanica) multibody library includes some global formulations for the dynamics and sensitivity analysis of multibody systems. The extension of the library to accommodate topological formulations in relative (joint) coordinates and their implementation are going to be described in two separate works, this one being devoted to dynamics and the second one to a sensitivity analysis. With this extension in the scope, some topological semi-recursive formulations derived in the past are revisited, generalized and reformulated. The need for generalization of the previously published formulations was detected because the equations proposed were not general enough to be integrated in an all-purpose multibody library in natural coordinates like MBSLIM, especially because both set of coordinates need to coexist, the definition of the mechanisms has to be the original one and the library has to be automatic and all the existing models have to work with the new approach. Moreover the new solver takes advantage of some problems solved in natural coordinates, like the initial position and initial velocity problems for closed-loop systems. Finally, to test the new equations, two benchmark problems are presented and their results compared: a spatial slider–crank mechanism and a buggy vehicle model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A special case of non-minimal joint coordinates is the spherical joint modeled with Euler parameters, where only three out of the four parameters are degrees of freedom. In order to use the formulation for open-loop systems with these joints, three parameters must be chosen as degrees of freedom and the other one expressed in terms of them. Otherwise the formulation for closed-loop systems should be used, adding the corresponding normalization constraint for the Euler parameters of each spherical (or floating) joint.

References

  1. AENOR: Vehículos de Carretera. Turismos. Pista de Pruebas Para Un Cambio Brusco de Carril. Parte1: Doble Cambio de Carril. AENOR, Madrid (2003). UNE 26514-1

    Google Scholar 

  2. Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  Google Scholar 

  3. Bae, D., Haug, E.: Mech. Struct. Mach. 15(3) 359 (1987). URL ISI:A1987M689200005. Times Cited: 74 Article English, BAE, D. S Univ Iowa, CTR Comp Aided Design, Iowa City, IA 52242 Cited References Count: 18 M6892 Marcel Dekker Inc 270 Madison Ave, New York, NY 10016 New York

    Article  Google Scholar 

  4. Bae, D., Haug, E.: Mech. Struct. Mach. 15(4). 481 (1988). URL ISI:A1988P897800004. Times Cited: 11 Article English BAE, D. S Univ Iowa, CTR Comp Aided Design, Iowa City, IA 52242 Cited References Count: 3 P8978 Marcel Dekker Inc 270 Madison Ave, New York, NY 10016 New York

    Article  Google Scholar 

  5. Bayo, E., Ledesma, R.: Nonlinear Dyn. 9(1–2), 113 (1996)

    Article  Google Scholar 

  6. Bayo, E., García de Jalon, J., Serna, M.: Comput. Methods Appl. Mech. Eng. 71(2), 183 (1988)

    Article  Google Scholar 

  7. Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, New York (1989)

    MATH  Google Scholar 

  8. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Multibody Syst. Dyn. 4(1), 55 (2000). URL ISI:000085305200003

    Article  Google Scholar 

  9. Cuadrado, J., Dopico, D., Gonzalez, M., Naya, M.: J. Mech. Des., Trans. ASME 126(4), 602 (2004). https://doi.org/10.1115/1.1758257

    Article  Google Scholar 

  10. Cuadrado, J., Dopico, D., Naya, M., Gonzalez, M.: Multibody Syst. Dyn. 12(2), 117 (2004). https://doi.org/10.1023/B:MUBO.0000044421.04658.de

    Article  Google Scholar 

  11. Dopico, D.: Formulaciones semi-recursivas y de penalización para la dinámica en tiempo real de sistemas multicuerpo. Ph.D. thesis, Universidade da Coruña (2004)

  12. Dopico, D., González, F., Cuadrado, J., Kövecses, J.: J. Comput. Nonlinear Dyn. 9(4), 041006 (2014). https://doi.org/10.1115/1.4027671

    Article  Google Scholar 

  13. Dopico, D., Luaces, A., Lugrís, U., Saura, M., González, F., Sanjurjo, E., Pastorino Mbslim, R.: Multibody systems en laboratorio de ingeniería mecánica (2009–2016). http://lim.ii.udc.es/MBSLIM

  14. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. B.G. Teubner, Stuttgart (1998)

    Book  Google Scholar 

  15. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Dordrecht, The Netherlands (1987)

    Book  Google Scholar 

  16. I.T.C. for Multibody Dynamics. Library of computational benchmark problems. http://www.iftomm-multibody.org/benchmark (2014)

  17. Garcia de Jalon, J.: Multibody Syst. Dyn. 18(1), 15 (2007). https://doi.org/10.1007/s11044-007-9068-0

    Article  MathSciNet  Google Scholar 

  18. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York USA (1994)

    Book  Google Scholar 

  19. García de Jalón, J., Unda, J., Avello, A.: Comput. Methods Appl. Mech. Eng. 56(3), 309 (1986). URL ISI:A1986D480500004

    Article  Google Scholar 

  20. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods. Allyn and Bacon (Prentice Hall College Div), Boston (1989)

    Google Scholar 

  21. Jimenez, J.: Kinematic and dynamic formulations for real-time simulation of multibody systems. Ph.D. thesis (1993)

  22. Rodriguez, J.: Analisis eficiente de mecanismos 3d con metodos topologicos y tecnologia de componentes en Internet. Ph.D. thesis, University of Navarre (2000)

  23. Rodriguez, J.I., Jimenez, J.M., Funes, F.J., de Jalon, J.G.: Multibody Syst. Dyn. 11(4), 295 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The support of the Spanish Ministry of Economy and Competitiveness (MINECO) under project DPI2016-81005-P is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dopico Dopico.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dopico Dopico, D., López Varela, Á. & Luaces Fernández, A. Augmented Lagrangian index-3 semi-recursive formulations with projections. Multibody Syst Dyn 52, 377–405 (2021). https://doi.org/10.1007/s11044-020-09771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09771-9

Keywords

Navigation