Log in

Thermoelastic buckling analysis of plates and shells of temperature and porosity dependent functionally graded materials

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This study aims to explore for the first time the thermoelastic buckling behavior of functionally graded porous plates and shells using an efficient finite element model based on the first-order shear deformation theory (FSDT) with the improvement of the shear strains via the introduction of a quadratic function that able to take into account the parabolic distribution of transverse shear stresses without any need of shear correction factors as standard (FSDT) theory. In this research, different sets of functionally graded metal/ceramic combinations, as well as porosity distributions, namely uniform (or even) and random (or uneven) porosity patterns, are also considered, and the effective material properties of the graded porous structure are determined via a modified power-law function. Two types of applied thermal loads are considered, namely Uniform and nonuniform thermal load (UT, NUT) with temperature-dependent (TD) and independent (TID) mechanical properties. The Green-Lagrange formulation, variational method, and a numerical iterative algorithm are applied to solve the governing equations with porosity and thermal dependent coefficients. To verify our results, various numerical comparisons are conducted on critical temperature buckling of plates and spherical shells, and they are compared with available results where a close correlation is observed. The influence of thermal loads, porosity volume fraction, types of porosity patterns, temperature dependency, and geometrical aspects on the thermal buckling behavior of FG porous plates and shells are scrutinized through different parametric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Ahmadifar, H., Yaghootian, A.: Thermal buckling analysis of moderately thick FGM plates based on the von Kármán nonlinearity and improved third order shear deformation theory. J. Therm. Stresses 42, 1432–1446 (2019)

    Article  Google Scholar 

  • Bourada, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.E.: A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates. J. Sandw. Struct. Mater. 14(1), 5–33 (2012)

    Article  Google Scholar 

  • Chaudharya, S.K., Kar, V.R., Shukla, K.K.: Flexural behavior of perforated functionally graded composite panels under complex loading conditions: higher-order finite-element approach. J. Aerosp. Eng. 34(6), 04021081 (2021). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001334

    Article  Google Scholar 

  • Chaudharya, S.K., Kar, V.R., Shukla, K.K.: Geometrically nonlinear large-deflection analysis of heated functionally graded composite panels with single and multiple perforations. Mech. Adv. Mat. Struct. 30(21), 4329–4346 (2023)

    Article  Google Scholar 

  • Cuma, Y.C., Özbey, M.B., Calim, F.F.: Vibration and dam** analysis of functionally graded shells. Mech. Time-Depend. Mater. (2023). https://doi.org/10.1007/s11043-023-09621-z

    Article  Google Scholar 

  • Daikh, A.A., Zenkour, A.M.: Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Mater. Res. Express 6, 115707 (2019)

    Article  Google Scholar 

  • Do, V.N.V., Lee, C.H.: A new nth-order shear deformation theory for isogeometric thermal buckling analysis of FGM plates with temperature-dependent material properties. Acta Mech. 230, 3783–3805 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Do, N.T., Tran, T.T., Pham, Q.H.: A new finite-element procedure for vibration analysis of FGP sandwich plates resting on Kerr foundation. Curved Layered Struct. (2023). https://doi.org/10.1515/cls-2022-0195

    Article  Google Scholar 

  • Doan, T.L., Le, P.B., Tran, T.T., Trai, V.K., Pham, Q.H.: Free vibration analysis of functionally graded porous nanoplates with different shapes resting on elastic foundation. J. Appl. Comput. Mech. 7(3), 1593–1605 (2021)

    Google Scholar 

  • Eslami, M.R., Ghorbani, H.R., Shakeri, M.: Thermoelastic buckling of thin spherical shells. J. Therm. Stresses 24, 1177–1198 (2001)

    Article  Google Scholar 

  • Fazzolari, F.A.: Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions. Compos. Struct. 121, 197–210 (2015)

    Article  Google Scholar 

  • Haddadpour, H., Mahmoudkhani, S., Navazi, H.M.: Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin-Walled Struct. 45(6), 591–599 (2007)

    Article  Google Scholar 

  • Hadji, L., Amoozgar, M., Tounsi, A.: Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory. Steel Compos. Struct. 42(5), 711–722 (2022)

    Google Scholar 

  • Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002a)

    Article  MATH  Google Scholar 

  • Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stresses 25, 603–625 (2002b)

    Article  Google Scholar 

  • Karakoti, A., Pandey, S., Kar, V.R.: Dynamic responses analysis of P and S-FGM sandwich cylindrical shell panels using a new layerwise method. Struct. Eng. Mech. 173, 108985 (2021)

    Google Scholar 

  • Karakoti, A., Pandey, S., Kar, V.R.: Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Struct. 173, 108985 (2022)

    Article  Google Scholar 

  • Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284, 531–549 (2005)

    Article  Google Scholar 

  • Koizumi, M.: Functionally gradient materials the concept of FGM. Ceram. Trans. 34, 3–10 (1993)

    Google Scholar 

  • Koizumi, M.: FGM activities in Japan. Composites, Part B, Eng. 28, 1–4 (1997)

    Article  Google Scholar 

  • Kumar, P., Harsha, S.P.: Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Compos. Struct. 267, 113901 (2021)

    Article  Google Scholar 

  • Kumar, P., Harsha, S.P.: Dynamic analysis of porosity dependent functionally graded sigmoid piezoelectric (FGSP) plate. Structures 16, 1737–1752 (2022)

    Article  Google Scholar 

  • Kumar, S., Kar, V.R.: Nonlinear fully-coupled thermoelastic analysis of bidirectional porous functionally graded doubly-curved shell panels with optimum material distribution. Mech. Adv. Mat. Struct. (2023a). https://doi.org/10.1080/15376494.2023.2235359

    Article  Google Scholar 

  • Kumar, S., Kar, V.R.: Nonlinear fully coupled thermoelastic transient analysis of axial functionally graded composite panel. Mech. Based Des. Struct. Mach. (2023b). https://doi.org/10.1080/15397734.2023.2202228

    Article  Google Scholar 

  • Love, A.: The Mathematical Theory of Elasticity, vol. 662. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  • Malekzadeh, P., Beni, A.A.: Free vibration of functionally graded arbitrary straight-sided quadrilateral plates in thermal environment. Compos. Struct. 92, 2758–2767 (2010)

    Article  Google Scholar 

  • Malekzadeh, P., Heydarpour, Y.: Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Compos. Struct. 94, 2971–2981 (2012)

    Article  Google Scholar 

  • Matsunaga, H.: Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Compos. Struct. 68, 439–454 (2005)

    Article  Google Scholar 

  • Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    Article  MATH  Google Scholar 

  • Najafizadeh, M.M., Eslami, M.R.: First order theory based thermo elastic stability of functionally graded material circular plates. AIAA J. 40, 1444–1450 (2002)

    Article  Google Scholar 

  • Pham, Q.H., Tran, T.T., Nguyen, P.C.: Nonlocal free vibration of functionally graded porous nanoplates using higher-order isogeometric analysis and ann prediction. Alex. Eng. J. 66, 651–667 (2021)

    Article  Google Scholar 

  • Pham, Q.H., Tran, T.T., Nguyen, P.C.: Dynamic response of functionally graded porous-core sandwich plates subjected to blast load using ES-MITC3 element. Compos. Struct. 173, 116722 (2023)

    Article  Google Scholar 

  • Prakash, T., Singha, M.K., Ganapathi, M.: Thermal postbuckling analysis of FGM skew plates. Eng. Struct. 30, 22–32 (2008)

    Article  Google Scholar 

  • Razavi, H., Babadi, A.F., Beni, Y.T.: Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160, 1299–1309 (2017)

    Article  Google Scholar 

  • Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Struct. 20, 881–896 (1984)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(1), 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(2), 69–77 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  • Saad, M., Hadji, L.: Thermal buckling analysis of porous FGM plates. J. Mater. Today Proc. 53, 196–201 (2022)

    Article  Google Scholar 

  • Saadatfar, M., Babazadeh, M.A., Babaelahi, M.: Creep analysis in a rotating variable thickness functionally graded disc with convection heat transfer and heat source. Mech. Time-Depend. Mater. (2022). https://doi.org/10.1007/s11043-023-09613-z

    Article  Google Scholar 

  • Sah, S.K., Ghosh, A.: Effect of porosity on the thermal buckling analysis of power and sigmoid law functionally graded material sandwich plates based on sinusoidal shear deformation theory. Int. J. Struct. Stab. Dyn. 22, 1793–6764 (2022)

    Article  MathSciNet  Google Scholar 

  • Saleh, B., Jiang, J., Fathi, R., Al-Habibi, T., Xu, Q., Wang, L., Song, D., Ma, A.: 30 years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Composites, Part B, Eng. 201, 108376 (2020)

    Article  Google Scholar 

  • Shariat, B.S., Eslami, M.: Buckling of thick functionally graded plates under mechanical and thermal loads. Compos. Struct. 78(3), 433–439 (2007)

    Article  Google Scholar 

  • Singh, S.J., Harsha, S.P.: Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation. Int. J. Mech. Mater. Des. 16, 707–731 (2020)

    Article  Google Scholar 

  • Sobhy, M.: Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations. Int. J. Appl. Mech. 7(6), 1550082 (2015)

    Article  MathSciNet  Google Scholar 

  • Song, R., Sahmani, S., Safaei, B.: Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes. Appl. Math. Mech. 42, 771–786 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates – a critical review of various modelling techniques and solution methods. Compos. Struct. 160, 43–60 (2017)

    Article  Google Scholar 

  • Talebia, S., Hedayatib, M.S.R., Ashooria, A.R.: Dynamic thermal buckling of spherical porous shells. Thin-Walled Struct. 172, 108737 (2022)

    Article  Google Scholar 

  • Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials, 1st edn. Macmillan Co., New York (1967)

    Google Scholar 

  • Trabelsi, S., Frikha, S.Z.A., Dammak, F.: Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int. J. Mech. Sci. 144, 74–89 (2018)

    Article  Google Scholar 

  • Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–459 (2019)

    Article  Google Scholar 

  • Trabelsi, S., Zghal, S., Dammak, F.: Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J. Braz. Soc. Mech. Sci. Eng. 42, 233 (2020)

    Article  Google Scholar 

  • Tuzemen, M.C., Salamcı, E., Unal, R.: Investigation of the relationship between flexural modulus of elasticity and functionally graded porous structures manufactured by AM. Mater. Today Commun. 31, 103592 (2022)

    Article  Google Scholar 

  • Wattanasakulpong, N.: Thermal buckling and elastic vibration analysis of functionally graded beams and plates using improved third-order shear deformation theory. Ph.D. thesis, School of Mechanical and Manufacturing Engineering, the University of New South Wales (2012)

  • Wattanasakulpong, N., Chaikittiratana, A.: Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50(5), 1331–1342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Wattanasakulpong, N., Ungbhakorn, V.: Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 30, 111–120 (2014)

    Article  Google Scholar 

  • Wattanasakulpong, N., Prusty, B.G., Kelly, D.W., Hoffman, m.: Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des. 36, 182–190 (2012)

    Article  Google Scholar 

  • Zamani, H.A., Nourazar, S.S., Aghdam, M.M.: Large-amplitude vibration and buckling analysis of foam beams on nonlinear elastic foundations. Mech. Time-Depend. Mater. (2022). https://doi.org/10.1007/s11043-022-09568-7

    Article  Google Scholar 

  • Zghal, S., Dammak, F.: Buckling responses of porous structural components with gradient power-based and sigmoid material variations under different types of compression loads. Compos. Struct. 273, 114313 (2021a)

    Article  Google Scholar 

  • Zghal, S., Dammak, F.: Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element. Comput. Math. Appl. 99(18), 52–72 (2021b)

    MathSciNet  MATH  Google Scholar 

  • Zghal, S., Frikha, A., Dammak, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites, Part B, Eng. 150, 165–183 (2018)

    Article  MATH  Google Scholar 

  • Zghal, S., Trabelsi, A.F.S., Dammak, F.: Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element. J. Therm. Stresses 44, 315–341 (2021)

    Google Scholar 

  • Zghal, S., Trabelsi, S., Dammak, F.: Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings. Mech. Based Des. Struct. Mach. 50(9), 2997–3039 (2022)

    Article  Google Scholar 

  • Zghal, S., Joueid, N., Tornabene, F., Dimitri, R., Chrigui, M., Dammak, F.: Time-dependent deflection responses of FG porous structures subjected to different external pulse loads. J. Vib. Eng. Technol. (2023). https://doi.org/10.1007/s42417-023-00880-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Najah Joueid: Writing – original draft, Resources, Software, Funding acquisition, Validation, Visualization, Formal analysis, Investigation, Methodology, Data curation. Souhir Zghal: Writing – original draft, Resources, Software, Validation, Visualization, Formal analysis, Investigation, Methodology, revision,Conceptualization. Mouldi Chrigui: Supervision, Funding acquisition, Formal analysis, Investigation. Fakhreddine Dammak: Resources, Software, Project administration, Supervision, Funding acquisition, Formal analysis, Investigation, Methodology, Revision, Conceptualization.

Corresponding author

Correspondence to Souhir Zghal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval statement

The authors declare that this research does not involve human and/or animal participants.

Informed consent

This paper has not been published elsewhere nor has it been submitted for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joueid, N., Zghal, S., Chrigui, M. et al. Thermoelastic buckling analysis of plates and shells of temperature and porosity dependent functionally graded materials. Mech Time-Depend Mater (2023). https://doi.org/10.1007/s11043-023-09644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-023-09644-6

Keywords

Navigation