Log in

A new hyper-elastic model for predicting multi-axial behaviour of rubber-like materials: formulation and computational aspects

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

We propose a new hyper-elastic model that is based on the standard invariants of Green–Cauchy. Experimental data reported by Treloar (Trans. Faraday Soc. 40:59, 1944) are used to identify the model parameters. To this end, the data of uni-axial tension and equi-bi-axial tension are used simultaneously. The new model has four material parameters, their identification leads to linear optimisation problem and it is able to predict multi-axial behaviour of rubber-like materials. We show that the response quality of the new model is equivalent to that of the well-known Ogden six parameters model. Thereafter, the new model is implemented in FE code. Then, we investigate the inflation of a rubber balloon with the new model and Ogden models. We compare both the analytic and numerical solutions derived from these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, H.: A constitutive relation for rubber-like materials. Int. J. Eng. Sci. 6, 549–563 (1968)

    Article  Google Scholar 

  • Amin, A.F.M.S., Alam, M.S., Okui, Y.: An improved hyperelasticity relation in modeling viscoelasticity response of natural and high dam** rubbers in compression: experiments, parameter identification and numerical verification. Mech. Mater. 34, 75–95 (2002)

    Article  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  • Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  • Attard, M.M., Hunt, G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41, 5327–5350 (2004)

    Article  MATH  Google Scholar 

  • Bechir, H., Chevalier, L., Chaouche, M., Boufala, K.: Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur. J. Mech. A, Solids 25, 110–124 (2006)

    Article  MATH  Google Scholar 

  • Benjeddou, A., Jankovich, E., Hadhri, T.: Determination of the parameters of Ogden’s law using biaxial data and Levenberg–Marquardt–Fletcher algorithm. J. Elastomers Plast. 25, 224–248 (1993)

    Article  Google Scholar 

  • Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  • Blatz, P., Ko, W.: Application of finite elastic theory to the deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251 (1962)

    Article  Google Scholar 

  • Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  • Bradley, G., Chang, P., McKenna, G., Ou, Y., Huang, Q., Chen, J.: Rubber modeling using uniaxial test data. J. Appl. Polym. Sci. 81, 837–848 (2001)

    Article  Google Scholar 

  • Chen, J.J.S., Satyamurthy, K., Hirschfelt, L.R.L.: Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. Comput. Struct. 50, 715–727 (1994)

    Article  MATH  Google Scholar 

  • Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  • Davidson, J.D., Goulbourne, N.C.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61, 1784–1797 (2013)

    Article  Google Scholar 

  • Elías-Zúñiga, A., Beatty, M.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829 (1961)

    Article  MathSciNet  Google Scholar 

  • Fong, J.T., Penn, R.W.: Construction of a strain energy function for an isotropic elastic material. Trans. Soc. Rheol. 19, 99–113 (1975)

    Article  Google Scholar 

  • Gendy, A.S., Saleeb, A.F.: Nonlinear material parameter estimation for characterizing hyper elastic large strain models. Comput. Mech. 25, 66–77 (2000)

    Article  MATH  Google Scholar 

  • Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 96, 59–61 (1996)

    Article  Google Scholar 

  • Haines, D.W., Wilson, W.D.: Strain-energy density function for rubberlike materials. J. Mech. Phys. Solids 27, 345–360 (1979)

    Article  MATH  Google Scholar 

  • Hart-Smith, L.J.: Elasticity parameters for finite deformations of rubber-like materials. Z. Angew. Math. Phys. 17, 608–626 (1966)

    Article  Google Scholar 

  • Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)

    Article  MATH  Google Scholar 

  • Hartmann, S., Tschöpe, T., Schreiber, L., Haupt, P.: Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur. J. Mech. A, Solids 22, 309–324 (2003)

    Article  MATH  Google Scholar 

  • Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  • Horgan, C.O., Saccomandi, G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)

    Article  Google Scholar 

  • James, A.G., Green, A.: Strain energy functions of rubber. II. The characterization of filled vulcanizates. J. Appl. Polym. Sci. 19, 2319–2330 (1975)

    Article  Google Scholar 

  • Johnson, A.R., Quigley, C.J., Mead, J.L.: Large strain viscoelastic constitutive models for rubber, part I: formulations. Rubber Chem. Technol. 67, 904–917 (1994)

    Article  Google Scholar 

  • Khajehsaeid, H., Arghavani, J., Naghdabadi, R.: A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. 38, 144–151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kroon, M.: An 8-chain model for rubber-like materials accounting for non-affine chain deformations and topological constraints. J. Elast. 102, 99–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lambert-Diani, J., Rey, C.: New phenomenological behavior laws for rubbers and thermoplastic elastomers. Eur. J. Mech. A, Solids 18, 1027–1043 (1999)

    Article  MATH  Google Scholar 

  • Marckmann, G.: Contribution to the study of rubber-like materials and inflated membranes (2004). https://tel.archives-ouvertes.fr/tel-00011650

  • Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006)

    Article  Google Scholar 

  • Marsden, J., Hughes, T.J.R.: Mathematical foundations of elasticity (1983). https://www.mysciencework.com/publication/show/fe49e88fa31fe38875b4feed6a779d7c

  • Miehe, C., Göktepe, S., Lulei, F.: A micro-approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  • Mott, P.H., Dorgan, J.R., Roland, C.M.: The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib. 312, 572–575 (2008)

    Article  Google Scholar 

  • Nörenberg, N., Mahnken, R.: Parameter identification for rubber materials with artificial spatially distributed data. Comput. Mech. 56, 353–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  • Ogden, R.W.: Non-linear Elastic Deformations. Courier Corporation, North Chelmsford (1997)

    Google Scholar 

  • Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004)

    Article  MATH  Google Scholar 

  • Peeken, H., Döpper, R., Orschall, B.: A 3-D rubber material model verified in a user-supplied subroutine. Comput. Struct. 26, 181–189 (1987)

    Article  Google Scholar 

  • Peng, S.T.J.: The elastic potential function of slightly compressible rubberlike materials. J. Polym. Sci., Polym. Phys. Ed. 17, 345–350 (1979)

    Article  Google Scholar 

  • Peng, T.J., Landel, R.F.: Stored energy function of rubberlike materials derived from simple tensile data. J. Appl. Phys. 43, 3064–3067 (1972)

    Article  Google Scholar 

  • Peng, S.T.J., Landel, R.F.: Stored energy function and compressibility of compressible rubberlike materials under large strain. J. Appl. Phys. 46, 2599–2604 (1975)

    Article  Google Scholar 

  • Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14, 509–517 (1970)

    Article  Google Scholar 

  • Przybylo, P.A., Arruda, E.M.: Experimental investigations and numerical modeling of incompressible elastomers during non-homogeneous deformations. Rubber Chem. Technol. 71, 730–749 (1998)

    Article  Google Scholar 

  • Rachik, M., Schmidtt, F., Reuge, N., Le Maoult, Y., Abbeé, F.: Elastomer biaxial characterization using bubble inflation technique. II: Numerical investigation of some constitutive models. Polym. Eng. Sci. 41, 532–541 (2001)

    Article  Google Scholar 

  • Ramier, J., Chazeau, L., Gauthier, C., Stelandre, L., Guy, L., Peuvrel-Disdier, E.: In situ SALS and volume variation measurements during deformation of treated silica filled SBR. J. Mater. Sci. 42, 8130–8138 (2007)

    Article  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 240, 491–508 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. Experiments on the deformation of rubber. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  • Shariff, M.H.B.M.: Strain energy function for filled and unfilled rubberlike material. Rubber Chem. Technol. 73, 1–18 (2000)

    Article  Google Scholar 

  • Stalnaker, D., Beatty, M.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)

    Article  MATH  Google Scholar 

  • Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82, 1183–1217 (2012)

    Article  MATH  Google Scholar 

  • Swanson, S.: Constitutive model for high elongation elastic materials. J. Eng. Mater. Technol. 107, 110–114 (1985)

    Article  Google Scholar 

  • Swanson, S.R., Christensen, L.W., Ensign, M.: Large deformation finite element calculations for slightly compressible hyperelastic materials. Comput. Struct. 21, 81–88 (1985)

    Article  Google Scholar 

  • Treloar, L.R.G.: Stress–strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59 (1944)

    Article  Google Scholar 

  • Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, London (1975)

    MATH  Google Scholar 

  • Treloar, L.R.G., Riding, G.: A non-Gaussian theory for rubber in biaxial strain. I. Mechanical properties. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 369, 261–280 (1979)

    Article  MATH  Google Scholar 

  • Truesdell, C., Noll, W.: The non-linear field theories of mechanics. Presented at the 1965

  • Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: The Non-Linear Field Theories of Mechanics, pp. 1–579. Springer, Berlin (1992)

    Chapter  Google Scholar 

  • Twizell, E.H., Ogden, R.W.: Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J. Aust. Math. Soc. Ser. B, Appl. Math 24, 424 (1983)

    Article  MATH  Google Scholar 

  • Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  Google Scholar 

  • Wu, P.D., Van Der Giessen, E.: On improved 3-D non Gaussian models for rubber elasticity. Mech. Res. Commun. 19, 427–433 (1992)

    Article  Google Scholar 

  • **ao, H.: An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials—part 1: incompressible deformations. Acta Mech. 223, 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamashita, Y., Kawabata, S.: Approximated form of the strain-energy-density function of carbon black filled rubber for industrial applications. Int. Polym. Sci. Technol. 20, T52–T64 (1993)

    Google Scholar 

  • Yaya, K., Bechir, H., Bremand, F.: Implementation of new strain-energy density function for a grade of carbon black-filled natural rubber in finite element code. Paper presented at the Sixth International Conference on Advances in Mechanical Engineering and Mechanics, Hammamet, Tunisia, 2015, December 20–22. https://www.researchgate.net/publication/290392272_Implementation_of_new_strain-energy_density_function_for_a_grade_of_carbon_black-filled_natural_rubber_in_finite_element_code

  • Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Div. Am. Chem. Soc. 63, 792–805 (1990)

    Article  Google Scholar 

  • Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Article  Google Scholar 

  • Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci., Part B, Polym. Phys. 35, 1919–1931 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the colleagues of the “Laboratoire d’Hydraulique et de l’Environnement” of the University of Bejaia, Route de Targua Ouzrmmour, Bejaia, Algeria to have allowed us to use FE Comsol Multiphysics code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Yaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaya, K., Bechir, H. A new hyper-elastic model for predicting multi-axial behaviour of rubber-like materials: formulation and computational aspects. Mech Time-Depend Mater 22, 167–186 (2018). https://doi.org/10.1007/s11043-017-9355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9355-y

Keywords

Navigation