Log in

Ppssm:push/pull smooth video streaming multicast protocol design and implementation for an overlay network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

IP multicast is one of the best techniques for video streaming on the Internet. It faces issues with respect to address allocation, routing, authorization, group management, security, and scalability. By default, local Internet Service Providers did not enable IP multicast services, because of the cost incurred in using multicast-enabled routers. To solve these issues some of the IP layer functionalities have been shifted to the Application Layer, thus leading to Application Layer Multicast (ALM) protocols. However, ALM protocols face issues related to synchronous data delivery, scalability, link stress, link stretch and node failures. Some of the existing protocols are CoolStreaming, and mTreebone. A novel ALM protocol based Push/Pull Smooth video Streaming Multicast (PPSSM) protocol is proposed in this paper, to increase the throughput and reduce the packet loss rate. The PPSSM protocol involves three stages, such as tree-mesh construction, dynamic buffer management and network coding techniques. In the tree-mesh construction, a tree consists of stable nodes and a mesh consists of unstable nodes. The proposed PPSSM optimizes the stable nodes in the tree, which minimizes or eliminates the pull operations from the unstable mesh overlay nodes, by exploring the potential of the stable nodes. Dynamic buffer management is achieved by setting the optimal buffer threshold value, using the optimization of the sensitivity parameters, such as packet loss and packet workload/delay by the Infinitesimal Perturbation Analysis and Stochastic Approximation algorithms. In addition to the tree-mesh construction and buffer management, the introduction of the network coding technique will enhance the throughput and minimize the packet loss and delay. Finally, the performance of the proposed PPSSM protocol is compared with those of CoolStreaming, and mTreebone, and it shows improvement in respect of throughput, packet loss, and average decoding time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams A, Nicholas J, SIadak W (2005) Protocol independent multicast - dense mode (PIM-DM): Protocol Specification (Revised), RFC 3973, http://www.ietf.org/rfc/rfc3973.txt

  2. Banerjee S, Bhattacharjee B, Kommareddy C (2002) Scalable application layer multicast. Proc, ACM Sigcomm

    Book  Google Scholar 

  3. Besharati R, Bag-Mohammadi M, Dezfouli MA (2010) A topology aware application layer multicast protocol. in Proc. CCNC,

  4. Castro M, Druschel P, Kermarrec A, Nandi A, Rowstron A, Singh A (2003) Split-stream: high-bandwidth multicast in cooperative environments. in ACM SIGOPS. Oper Syst Rev 37:298–313

    Article  Google Scholar 

  5. Cheng H, Naixue**ong, Vasilakos AV, Yang LT, Chen G, **aofangZhuang (2012) Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Netw 10(5):760–773 ISSN 1570-8705

    Article  Google Scholar 

  6. Deering S, Cheriton D (1990) Multicast routing in datagram internetworks and extended LANS. ACM Trans Comp Syst 8(2):85–111[11] [RFC 3376] B. Cain

    Article  Google Scholar 

  7. Deering S, Kouvelas I, Fenner W, Thyagarajan A (2002) Internet Group Management Protocol, Version 3. RFC 3376, http://www.ietf.org/rfc/rfc2236.txt

  8. Demestichas PP, Stavroulaki VAG, Papadopoulou LM, Vasilakos AV, Theologou ME (2004) Service configuration and traffic distribution in composite radio environments. IEEE Trans Appl Rev 34(1):69–81

    Google Scholar 

  9. Fenner B, Handley M, Holbrook H, Kouvelas I (2006) Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 4601, http://tools.ietf.org/rfc/rfc4601.txt

  10. Ho T, Lun DS (2008) Network Coding: An Introduction. In: Cambridge Univ. Press, Cambridge

    Google Scholar 

  11. Hosseini M, Ahmed DT, Shirmohammadi S, Georganas ND (2007) A survey of application-layer multicast protocols. Communications Surveys & Tutorials, IEEE, 9(3), 58–74, Third Quarter, doi:10.1109/COMST.2007.4317616.

  12. Lee JJ, Tan T, Kakadia D, Delos Reyes EM, Lam MG. Dynamic setting of optimal buffer in IP networks, http://www.google.com/patents/US8223641.

  13. Liang L, Song Y, Zhang H, Ma H, Vasilakos AV (2015) Physarum Optimization: A Biology-Inspired Algorithm for the Steiner Tree Problem in Networks. Comput, IEEE Trans on 64(3):819–832

    MathSciNet  Google Scholar 

  14. Markou MM, Panayiotou C (2005) Dynamic control and optimization of buffer size in wireless networks. IEEE Veh Technol Conf 4:2162–2166

    Google Scholar 

  15. Padmanabhan V, Wang H, Chou P (2003) Resilient peer-to-peer streaming. proceedings of 11th IEEE international conference on network protocols, pp. 16–27. IEEE.

  16. Peng Li, Song Guo, Shui Yu, Vasilakos, AV (2012) CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM, 2012 Proc IEEE, 100–108.

  17. Rudolf Ahlswede, NingCai, Shuo-Yen Robert Li, Raymond W Yeung (2000) Network Information Flow. IEEE Trans. on Inf. Theory, 46(4), 1204–1216,

  18. Song Y, Liang L, Ma H, Vasilakos AV (2014) A Biology-Based Algorithm to Minimal Exposure Problem of Wireless Sensor Networks. IEEE Trans Netw Serv Manag 11(3):417–430

    Article  Google Scholar 

  19. Thomos N, Frossard P (2010) Network coding of rateless video in streaming overlays. IEEE Trans Circ Syst Video Technol 20(12):1834–1847

    Article  Google Scholar 

  20. Tran DA, Hua KA, Do T (2003) Zigzag: ancient peer-to-peer scheme for media streaming. In the IEEE computer and. Communications 2:1283–1292

    Google Scholar 

  21. Venkataraman V, Yoshida K, Francis P (2006) Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer multicast. Proceedings of the 14th IEEE International Conference on Network Protocols, 2–11,

  22. Vidtorrent-vidtorrent (2013) URL http://web.media.mit.edu/~vyzo/vidtorrent/index.html. Accessed December 12, 2013.

  23. Vlavianos A, Iliofotou M, Faloutsos M (2006) Bitos: Enhancing bittorrent for supporting streaming applications. In Proceedings – IEEE INFOCOM,

  24. Wang F, **ong Y, Liu J (2010) MTreebone: a collaborative tree-mesh overlay network for multicast video streaming. IEEE Trans Parallel Distri Syst 21(3):379–392

    Article  Google Scholar 

  25. Youssef M, Ibrahim M, Abdelatif M, Chen L (2014) Vasilakos routing metrics of cognitive radio networks: a survey. IEEE Commun Surv Tutorials 16(1):92–109

    Article  Google Scholar 

  26. Zhang X, Liu J, Li B, Yum TP (2005) DONet/CoolStreaming: a data-driven overlay network for peer-to-peer live media streaming. Proc IEEE INFOCOM 3:2102–2111

    Google Scholar 

  27. ZhijieShen, Luo J, Zimmermann R, Vasilakos AV (2011) Peer-to-Peer Media Streaming: Insights and New Developments. Proc IEEE 99(12):2089–2109

    Article  Google Scholar 

  28. Zhou L, Chao H-C, Vasilakos AV (2011) Joint Forensics-Scheduling Strategy for Delay-Sensitive Multimedia Applications over Heterogeneous Networks. IEEE J Sel Areas Commun 29(7):1358–1367

    Article  Google Scholar 

  29. Zhou L, Zhang Y, Song K, **g W, Vasilakos AV (2011) Distributed Media Services in P2P-Based Vehicular Networks. Veh Technol, IEEE Trans on 60(2):692–703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ruso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruso, T., Chellappan, C. & Sivasankar, P. Ppssm:push/pull smooth video streaming multicast protocol design and implementation for an overlay network . Multimed Tools Appl 75, 17097–17119 (2016). https://doi.org/10.1007/s11042-015-2979-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2979-5

Keywords

Navigation