Log in

Conjugated linoleic acid and glucosamine supplements may prevent bone loss in aging by regulating the RANKL/RANK/OPG pathway

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in develo** efficient treatment strategies and focusing future studies on these supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Szulc P (2018) Bone turnover: Biology and assessment tools. Best Pract Res Clin Endocrinol Metab 32(5):725–738. https://doi.org/10.1016/j.beem.2018.05.003

    Article  PubMed  Google Scholar 

  2. Iwaniec UT, Turner RT (2016) Influence of body weight on bone mass, architecture and turnover. J Endocrinol 230(3):R115–130. https://doi.org/10.1530/joe-16-0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS (2008) The cell biology of bone metabolism. J Clin Pathol 61(5):577–587. https://doi.org/10.1136/jcp.2007.048868

    Article  CAS  PubMed  Google Scholar 

  4. Albdeery A, Alzamily A (2022) Evaluation of the effect of injections of both platelet-rich plasma and hyaluronic acid in patients with early knee osteoarthritis via the concentration of interleukin-1β in serum. J Biomed Biochem 1(3):39–49. https://doi.org/10.57238/jbb.2022.20103

    Article  CAS  Google Scholar 

  5. Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatol 4(1):46

    Article  PubMed  Google Scholar 

  6. Banu J, Bhattacharya A, Rahman M, O’Shea M, Fernandes G (2006) Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 5(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martinez de Victoria E (2016) Calcium, essential for health. Nutr Hosp 33(Suppl 4):341. https://doi.org/10.20960/nh.341

    Article  PubMed  Google Scholar 

  8. Corwin RL (2003) Effects of dietary fats on bone health in advanced age. Prostaglandins, leukotrienes, and essential fatty acids 68. 6379–386. https://doi.org/10.1016/s0952-3278(03)00062-0

  9. Zhang B, **e Y, Ni Z, Chen L (2020) Effects and Mechanisms of Exogenous Electromagnetic Field on Bone cells: a review. Bioelectromagnetics. https://doi.org/10.1002/bem.22258

  10. Pizones J, Plotkin H, Parra-Garcia JI, Alvarez P, Gutierrez P, Bueno A, Fernandez-Arroyo A (2005) Bone healing in children with osteogenesis imperfecta treated with bisphosphonates. J Pediatr Orthop 25(3):332–335

    Article  PubMed  Google Scholar 

  11. Ubios A, Furno GJ, Guglielmotti M (1991) Effect of calcitonin on alveolar wound healing. J oral Pathol Med 20(7):322–324

    Article  CAS  PubMed  Google Scholar 

  12. Grasser WA, Pan LC, Thompson DD, Paralkar VM (1997) Common mechanism for the estrogen agonist and antagonist activities of droloxifene. J Cell Biochem 65(2):159–171. https://doi.org/10.1002/(sici)1097-4644(199705)65:2>159::aid-jcb3<3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  13. Fischer V, Haffner-Luntzer M, Amling M, Ignatius A (2018) Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. Eur Cells Mater 35:365–385. https://doi.org/10.22203/eCM.v035a25

    Article  CAS  Google Scholar 

  14. Panday K, Gona A, Humphrey MB (2014) Medication-induced osteoporosis: screening and treatment strategies. Therapeutic Adv Musculoskelet Disease 6(5):185–202

    Article  CAS  Google Scholar 

  15. Komori T (2016) Cell death in chondrocytes, osteoblasts, and Osteocytes. Int J Mol Sci 17(12). https://doi.org/10.3390/ijms17122045

  16. Ono T, Nakashima T (2018) Recent advances in osteoclast biology. Histochem Cell Biol 149(4):325–341. https://doi.org/10.1007/s00418-018-1636-2

    Article  CAS  PubMed  Google Scholar 

  17. Ohlsson C, Sjogren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26(2):69–74. https://doi.org/10.1016/j.tem.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Bolamperti S, Villa I, Rubinacci A (2022) Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 10(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Therapeutic Adv Musculoskelet Disease 5(1):13–31

    Article  CAS  Google Scholar 

  20. Yu Y, Wang L, Ni S, Li D, Liu J, Chu HY, Zhang N, Sun M, Li N, Ren Q (2022) Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun 13(1):4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Yu Y, Ni S, Li D, Liu J, **e D, Chu HY, Ren Q, Zhong C, Zhang N (2022) Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics 12(13):5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyce BF, **ng L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S (2020) RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed research international 2020

  24. Amin N, Boccardi V, Taghizadeh M, Jafarnejad S (2020) Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 32(3):363–371

    Article  PubMed  Google Scholar 

  25. Guo Q, Li T, Qu Y, Liang M, Ha Y, Zhang Y, Wang Q (2022) New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Progress in lipid research:101199

  26. Ing SW, Belury MA (2011) Impact of conjugated linoleic acid on bone physiology: proposed mechanism involving inhibition of adipogenesis. Nutr Rev 69(3):123–131. https://doi.org/10.1111/j.1753-4887.2011.00376.x

    Article  PubMed  Google Scholar 

  27. Benjamin S, Prakasan P, Sreedharan S, Wright AD, Spener F (2015) Pros and cons of CLA consumption: an insight from clinical evidences. Nutr Metabolism 12:4. https://doi.org/10.1186/1743-7075-12-4

    Article  CAS  Google Scholar 

  28. Terasawa N, Okamoto K, Nakada K, Masuda K (2017) Effect of conjugated linoleic acid intake on endurance Exercise Performance and Anti-fatigue in Student athletes. J Oleo Sci 66(7):723–733. https://doi.org/10.5650/jos.ess17053

    Article  CAS  PubMed  Google Scholar 

  29. Baghi AN, Mazani M, Nemati A, Amani M, Alamolhoda S, Mogadam RA (2016) Anti-inflammatory effects of conjugated linoleic acid on young athletic males. JPMA The Journal of the Pakistan Medical Association 66(3):280–284

    PubMed  Google Scholar 

  30. Kirkham S, Samarasinghe R (2009) Glucosamine. J Orthop Surg 17(1):72–76

    Article  CAS  Google Scholar 

  31. Kantor ED, Lampe JW, Navarro SL, Song X, Milne GL, White E (2014) Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J Altern Complement Med 20(6):479–485

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagaoka I, Tsuruta A, Yoshimura M (2019) Chondroprotective action of glucosamine, a chitosan monomer, on the joint health of athletes. Int J Biol Macromol 132:795–800. https://doi.org/10.1016/j.ijbiomac.2019.03.234

    Article  CAS  PubMed  Google Scholar 

  33. Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E (2018) ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 15(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang Z, Li Z, Zhang W, Yang Y, Han B, Liu W, Peng Y (2018) Dietary natural N-Acetyl-d-glucosamine prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. Molecules 23(9):2302

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tat SK, Pelletier JP, Vergés J, Lajeunesse D, Montell E, Fahmi H, Lavigne M, Martel-Pelletier J (2007) Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Therapy 9(6):R117. https://doi.org/10.1186/ar2325

    Article  CAS  Google Scholar 

  36. Rahman MM, Halade GV, Williams PJ, Fernandes G (2011) t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity. J Cell Physiol 226(9):2406–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lehnen TE, da Silva MR, Camacho A, Marcadenti A, Lehnen AM (2015) A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism. J Int Soc Sports Nutr 12:36. https://doi.org/10.1186/s12970-015-0097-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim Y, Kim J, Whang KY, Park Y (2016) Impact of conjugated linoleic acid (CLA) on skeletal muscle metabolism. Lipids 51(2):159–178. https://doi.org/10.1007/s11745-015-4115-8

    Article  CAS  PubMed  Google Scholar 

  39. Gangidi RR, Lokesh BR (2014) Conjugated linoleic acid (CLA) formation in edible oils by photoisomerization: a review. J Food Sci 79(5):R781–785. https://doi.org/10.1111/1750-3841.12449

    Article  CAS  PubMed  Google Scholar 

  40. Koronowicz AA, Banks P (2018) Antitumor Properties of CLA-Enriched Food Products. Nutr Cancer 70(4):529–545. https://doi.org/10.1080/01635581.2018.1460684

    Article  CAS  PubMed  Google Scholar 

  41. Roy BD, Antolic A (2009) Conjugated linoleic acid (CLA) and bone health: a review. Curr Top Nutraceutical Res 7(1):27

    CAS  Google Scholar 

  42. Dhiman TR, Nam SH, Ure AL (2005) Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 45(6):463–482. https://doi.org/10.1080/10408390591034463

    Article  CAS  PubMed  Google Scholar 

  43. Kramer JK, Cruz-Hernandez C, Deng Z, Zhou J, Jahreis G, Dugan ME (2004) Analysis of conjugated linoleic acid and trans 18: 1 isomers in synthetic and animal products. Am J Clin Nutr 79(6):1137S–1145S

    Article  CAS  PubMed  Google Scholar 

  44. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc 79(2):159–163

    Article  CAS  Google Scholar 

  45. Ogawa J, Matsumura K, Kishino S, Omura Y, Shimizu S (2001) Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl Environ Microbiol 67(3):1246–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorissen L, Leroy F, De Vuyst L, De Smet S, Raes K (2015) Bacterial production of conjugated linoleic and linolenic acid in foods: a technological challenge. Crit Rev Food Sci Nutr 55(11):1561–1574. https://doi.org/10.1080/10408398.2012.706243

    Article  CAS  PubMed  Google Scholar 

  47. Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen H, Chen W (2017) Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 68:26–36. https://doi.org/10.1016/j.plipres.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  48. Belury MA, Nickel KP, Bird CE, Wu Y (1996) Dietary conjugated linoleic acid modulation of phorbol ester skin tumor promotion

  49. Shan Z, Luo ZP, Shen X, Chen L (2017) Promotion of fracture healing by conjugated linoleic acid in rats. J Orthop Surg 25(2):2309499017718910. https://doi.org/10.1177/2309499017718910

    Article  Google Scholar 

  50. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40(4):283–298. https://doi.org/10.1016/s0163-7827(01)00008-x

    Article  CAS  PubMed  Google Scholar 

  51. Cho K, Song Y, Kwon D (2016) Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise. Iran J Basic Med Sci 19(1):20–27

    PubMed  PubMed Central  Google Scholar 

  52. Bruen R, Fitzsimons S, Belton O (2017) Atheroprotective effects of conjugated linoleic acid. Br J Clin Pharmacol 83(1):46–53. https://doi.org/10.1111/bcp.12948

    Article  CAS  PubMed  Google Scholar 

  53. Brownbill RA, Petrosian M, Ilich JZ (2005) Association between dietary conjugated linoleic acid and bone mineral density in postmenopausal women. J Am Coll Nutr 24(3):177–181

    Article  CAS  PubMed  Google Scholar 

  54. Roseti L, Desando G, Cavallo C, Petretta M, Grigolo B (2019) Articular cartilage regeneration in osteoarthritis. Cells 8(11):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu H, **ang X, Huang J, Zhu B, Wang L, Tang Y, Du F, Li L, Yan F, Ma L (2021) Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis. Chin Chem Lett 32(5):1759–1764

    Article  CAS  Google Scholar 

  56. Li L, Xu H, Qu L, Nisar M, Nisar MF, Liu X, Xu K (2023) Water extracts of Polygonum Multiflorum Thunb. And its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation. Acupunct Herb Med 3(2):96–106

    Article  Google Scholar 

  57. Dahmer S, Schiller R (2008) Glucosamine. Am Family Phys 78(4):471–476

    Google Scholar 

  58. Dalirfardouei R, Karimi G, Jamialahmadi K (2016) Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci 152:21–29

    Article  CAS  PubMed  Google Scholar 

  59. Matheson AJ, Perry CM (2003) Glucosamine Drugs & Aging 20(14):1041–1060

    Article  CAS  Google Scholar 

  60. Sun S-J, Deng P, Peng C-E, Ji H-Y, Mao L-F, Peng L-Z (2022) Extraction, structure and immunoregulatory activity of low molecular weight polysaccharide from Dendrobium officinale. Polymers 14(14):2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu Q, Gao Z-J, Yu X, Wang P (2022) Dietary regulation in health and disease. Signal Transduct Target Therapy 7(1):252

    Article  Google Scholar 

  62. Huang K, Huang J, Zhao J, Gu Z, Wu J (2022) Natural lotus root-based scaffolds for bone regeneration. Chin Chem Lett 33(4):1941–1945

    Article  CAS  Google Scholar 

  63. Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS (2021) The effect of inflammation on bone. Front Physiol 11:1695

    Article  Google Scholar 

  64. Reginster J-Y, Neuprez A, Lecart M-P, Sarlet N, Bruyere O (2012) Role of glucosamine in the treatment for osteoarthritis. Rheumatol Int 32(10):2959–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang HE, Kim SJ, Yeo E-j, Hong J, Rajgopal A, Hu C, Murray MA, Dang J, Park E (2022) Pharmacokinetic comparison of Chitosan-Derived and Biofermentation-Derived glucosamine in Nutritional supplement for Bone Health. Nutrients 14(15):3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams C, Ampat G (2020) Glucosamine Sulfate

  67. Meulyzer M, Vachon P, Beaudry F, Vinardell T, Richard H, Beauchamp G, Laverty S (2008) Comparison of pharmacokinetics of glucosamine and synovial fluid levels following administration of glucosamine sulphate or glucosamine hydrochloride. Osteoarthr Cartil 16(9):973–979. https://doi.org/10.1016/j.joca.2008.01.006

    Article  CAS  Google Scholar 

  68. Ing SW, Belury MA (2011) Impact of conjugated linoleic acid on bone physiology: proposed mechanism involving inhibition of adipogenesis. Nutr Rev 69(3):123–131

    Article  PubMed  Google Scholar 

  69. Cusack S, Jewell C, Cashman K (2005) The effect of conjugated linoleic acid on the viability and metabolism of human osteoblast-like cells. Prostaglandins Leukot Essent Fatty Acids 72(1):29–39

    Article  CAS  PubMed  Google Scholar 

  70. Piattelli A, Scarano A, Corigliano M, Piattelli M (1996) Effects of alkaline phosphatase on bone healing around plasma-sprayed titanium implants: a pilot study in rabbits. Biomaterials 17(14):1443–1449. https://doi.org/10.1016/0142-9612(96)87288-7

    Article  CAS  PubMed  Google Scholar 

  71. Platt I, Rao LG, El-Sohemy A (2007) Isomer-specific Effects of conjugated linoleic acid on mineralized bone nodule formation from human Osteoblast-LikeCells. Experimental Biology and Medicine 232(2):246–252

    CAS  PubMed  Google Scholar 

  72. Watkins BA, Shen C-L, McMurtry JP, Xu H, Bain SD, Allen KG, Seifert MF (1997) Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-I concentration and formation rate in chicks. J Nutr 127(6):1084–1091

    Article  CAS  PubMed  Google Scholar 

  73. Park Y, Kim J, Scrimgeour AG, Condlin ML, Kim D, Park Y (2013) Conjugated linoleic acid and calcium co-supplementation improves bone health in ovariectomised mice. Food Chem 140(1–2):280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reginster JY, Neuprez A, Lecart MP, Sarlet N, Bruyere O (2012) Role of glucosamine in the treatment for osteoarthritis. Rheumatol Int 32(10):2959–2967. https://doi.org/10.1007/s00296-012-2416-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lv C, Wang L, Zhu X, Lin W, Chen X, Huang Z, Huang L, Yang S (2018) Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie 99:271–277. https://doi.org/10.1016/j.biopha.2018.01.066

    Article  CAS  Google Scholar 

  76. Henrotin Y, Chevalier X, Herrero-Beaumont G, McAlindon T, Mobasheri A, Pavelka K, Schön C, Weinans H, Biesalski H (2013) Physiological effects of oral glucosamine on joint health: current status and consensus on future research priorities. BMC Res Notes 6:115. https://doi.org/10.1186/1756-0500-6-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khosla S (2001) Minireview: the opg/rankl/rank system. Endocrinology 142(12):5050–5055

    Article  CAS  PubMed  Google Scholar 

  78. Hofbauer L, Kuhne C, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 4(3):268

    CAS  PubMed  Google Scholar 

  79. Wunderle M, Ruebner M, Haberle L, Schwenke E, Hack CC, Bayer CM, Koch MC, Schwitulla J, Schulz-Wendtland R, Kozieradzki I, Lux MP, Beckmann MW, Jud SM, Penninger JM, Schneider MO, Fasching PA (2020) RANKL and OPG and their influence on breast volume changes during pregnancy in healthy women. Sci Rep 10(1):5171. https://doi.org/10.1038/s41598-020-62070-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu W, Zhang X (2015) Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues. Mol Med Rep 11(5):3212–3218

    Article  CAS  PubMed  Google Scholar 

  81. Kovács B, Vajda E, Nagy EE (2019) Regulatory Effects and interactions of the wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in Osteoarthritis. Int J Mol Sci 20(18). https://doi.org/10.3390/ijms20184653

  82. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 39(1):19–26. https://doi.org/10.1007/s00774-020-01162-6

    Article  CAS  PubMed  Google Scholar 

  83. Kostenuik PJ (2005) Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 5(6):618–625

    Article  CAS  PubMed  Google Scholar 

  84. Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2):326–335

    Article  CAS  PubMed  Google Scholar 

  85. Tu P, Duan P, Zhang R-S, Xu D-B, Wang Y, Wu H-P, Liu Y-H, Si L (2015) Polymorphisms in genes in the RANKL/RANK/OPG pathway are associated with bone mineral density at different skeletal sites in post-menopausal women. Osteoporos Int 26(1):179–185

    Article  CAS  PubMed  Google Scholar 

  86. Hsu Y-H, Niu T, Terwedow HA, Xu X, Feng Y, Li Z, Brain JD, Rosen CJ, Laird N, Xu X (2006) Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118(5):568–577

    Article  CAS  PubMed  Google Scholar 

  87. Amin N, Clark CC, Taghizadeh M, Djafarnejad S (2020) Zinc supplements and bone health: the role of the RANKL-RANK axis as a therapeutic target. J Trace Elem Med Biol 57:126417

    Article  CAS  PubMed  Google Scholar 

  88. Rahman MM, Fernandes G, Williams P (2014) Conjugated linoleic acid prevents ovariectomy-induced bone loss in mice by modulating both osteoclastogenesis and osteoblastogenesis. Lipids 49(3):211–224. https://doi.org/10.1007/s11745-013-3872-5

    Article  CAS  PubMed  Google Scholar 

  89. Platt I, El-Sohemy A (2009) Effects of 9cis,11trans and 10trans,12cis CLA on osteoclast formation and activity from human CD14 + monocytes. Lipids Health Dis 8:15. https://doi.org/10.1186/1476-511x-8-15

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rahman MM, Bhattacharya A, Fernandes G (2006) Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J Lipid Res 47(8):1739–1748. https://doi.org/10.1194/jlr.M600151-JLR200

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Wang C, Gong C (2020) Repairing effects of glucosamine sulfate in combination with etoricoxib on articular cartilages of patients with knee osteoarthritis. J Orthop Surg Res 15(1):150. https://doi.org/10.1186/s13018-020-01648-z

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ivanovska N, Dimitrova P (2011) Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine. Arthritis Res Therapy 13(2):1–13

    Article  Google Scholar 

  93. Ali Abd Z, Jabbar N (2023) Circulating microrna-22 as a biomarker related to oxidative stress in hyperthyroid women patient. J Biomed Biochem 2(3):28–37. https://doi.org/10.57238/jbb.2023.7019.1039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Shaymaa J. Abdulrahman, Abduladheem Turki Jalil, Mohanad Ali Abdulhadi, Dumooa Falah, Muna S. Merza, Abbas F. Almulla, Ahmed Ali and Ronak Taher Ali all contributed significantly to the development and completion of this research paper. Shaymaa J. Abdulrahman, Abduladheem Turki Jalil and Mohanad Ali Abdulhadi were responsible for conceptualizing the study and designing the research framework. Ronak Taher Ali, Dumooa Falah, and Muna S. Merza conducted the literature review, gathering relevant information on bone health, osteoporosis, and the impact of various drugs and supplements. Abbas F. Almulla and Ahmed Ali were involved in analyzing and interpreting the data related to the regulatory effect of RANKL/RANK/OPG on bone turnover concerning the use of CLA and glucosamine supplements. All authors participated in the critical review of the manuscript, providing valuable insights, and revising the content to ensure the accuracy and clarity of the information presented. Shaymaa J. Abdulrahman, Abduladheem Turki Jalil, Mohanad Ali Abdulhadi, Dumooa Falah, Muna S. Merza, Abbas F. Almulla, Ahmed Ali and Ronak Taher Ali contributed equally in the preparation of the final version of the paper, approving it for submission, and agreeing to be accountable for all aspects of the work. Their collaborative efforts have been instrumental in addressing the knowledge gap regarding the potential effects of CLA and glucosamine on the RANKL/RANK/OPG mechanism on bone turnover, thus paving the way for the development of more effective treatment strategies and guiding future studies on these supplements and their mechanisms in bone health.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, S., Abdulhadi, M.A., Turki Jalil, A. et al. Conjugated linoleic acid and glucosamine supplements may prevent bone loss in aging by regulating the RANKL/RANK/OPG pathway. Mol Biol Rep 50, 10579–10588 (2023). https://doi.org/10.1007/s11033-023-08839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08839-x

Keywords

Navigation