Log in

Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, develo** new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer.

Methods and results

In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types.

Conclusion

Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the study are available from the corresponding author on reasonable request.

Abbreviations

ECM:

Extracellular matrix

ERK:

Extracellular signal-regulated kinase

JNK:

C-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MDR:

Multidrug resistance

MMP:

Matrix metalloproteinase

NSCLCs:

Non-small-cell lung carcinomas

OS:

Osteosarcoma

PEX:

Hemopexin

RT-PCR:

Real-time polymerase chain reaction

ULA:

Ursolic acid

UNA:

Ursonic acid

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  2. Ferguson JL, Turner SP (2018) Bone cancer: diagnosis and treatment principles. Am Fam Physician 98(4):205–213

    PubMed  Google Scholar 

  3. Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP et al (2016) Osteosarcoma: cells-of-origin, cancer stem cells, and targeted therapies. Stem Cells Int 2016:3631764

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gill J, Gorlick R (2021) Advancing therapy for osteosarcoma. Nat Rev Clin Oncol 18(10):609–624

    Article  PubMed  Google Scholar 

  5. Harting MT, Blakely ML (2006) Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg 15(1):25–29

    Article  PubMed  Google Scholar 

  6. Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z (2020) The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res 39(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee YJ, Lee SY (2021) Maclurin exerts anti-cancer effects in human osteosarcoma cells via prooxidative activity and modulations of PARP, p38, and ERK signaling. IUBMB Life 73(8):1060–1072

    Article  CAS  PubMed  Google Scholar 

  8. Son J, Lee SY (2021) Emetine exerts anticancer effects in U2OS human osteosarcoma cells via activation of p38 and inhibition of ERK, JNK, and beta-catenin signaling pathways. J Biochem Mol Toxicol 35(10):e22868

    Article  CAS  PubMed  Google Scholar 

  9. Yang C, Zhang L, Huang H, Yuan X, Zhang P, Ye C et al (2022) Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/beta-catenin and MAPKs signaling pathways. Genes Dis 9(2):466–478

    Article  CAS  PubMed  Google Scholar 

  10. Son J, Lee SY (2020) Therapeutic potential of ursonic acid: Comparison with ursolic acid. Biomolecules 10(11):1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang S, Zhao Q, **ang H, Liu M, Zhang Q, Xue W et al (2013) Antiproliferative activity and apoptosis-inducing mechanism of constituents from Toona sinensis on human cancer cells. Cancer Cell Int 13(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Son J, Lee SY (2020) Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway. Chem Biol Interact 315:108910

    Article  CAS  PubMed  Google Scholar 

  13. Liao X, Zhou X, Mak NK, Leung KN (2013) Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway. PLoS ONE 8(12):e82294

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SI, Bae JA, Ko YS, Lee KI, Kim H, Kim KK (2016) Geijigajakyak decoction inhibits the motility and tumorigenesis of colorectal cancer cells. BMC Complement Altern Med 16(1):288

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yuan XH, Zhang P, Yu TT, Huang HK, Zhang LL, Yang CM et al (2020) Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/beta-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. Am J Transl Res 12(9):5381–5398

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chandhanayingyong C, Kim Y, Staples JR, Hahn C, Lee FY (2012) MAPK/ERK signaling in osteosarcomas, ewing sarcomas and chondrosarcomas: therapeutic implications and future directions. Sarcoma 2012:404810

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803:20–28

    Article  CAS  PubMed  Google Scholar 

  19. Alford VM, Kamath A, Ren X, Kumar K, Gan Q, Awwa M et al (2017) Targeting the hemopexin-like domain of latent matrix metalloproteinase-9 (proMMP-9) with a small molecule inhibitor prevents the formation of focal adhesion junctions. ACS Chem Biol 12(11):2788–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okusha Y, Eguchi T, Sogawa C, Okui T, Nakano K, Okamoto K et al (2018) The intranuclear PEX domain of MMP involves proliferation, migration, and metastasis of aggressive adenocarcinoma cells. J Cell Biochem 119(9):7363–7376

    Article  CAS  PubMed  Google Scholar 

  21. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  CAS  PubMed  Google Scholar 

  22. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG (2020) Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells 9(5):1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bjornland K, Flatmark K, Pettersen S, Aaasen AO, Fodstad O, Maelandsmo GM (2005) Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res 127(2):151–156

    Article  CAS  PubMed  Google Scholar 

  24. Huang JF, Du WX, Chen JJ (2016) Elevated expression of matrix metalloproteinase-3 in human osteosarcoma and its association with tumor metastasis. J BUON 21(5):1279–1286

    PubMed  Google Scholar 

  25. Rubin EM, Guo Y, Tu K, **e J, Zi X, Hoang BH (2010) Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther 9(3):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L et al (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers 11(10):1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E et al (2008) The roles of MAPKs in disease. Cell Res 18(4):436–442

    Article  CAS  PubMed  Google Scholar 

  28. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19(3):1997–2007

    PubMed  PubMed Central  Google Scholar 

  29. Zhu G, Shen Q, Jiang H, Ji O, Zhu L, Zhang L (2020) Curcumin inhibited the growth and invasion of human monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP signalling. Pharm Biol 58(1):25–34

    Article  CAS  PubMed  Google Scholar 

  30. Yao M, Wang X, Zhao Y, Wang X, Gao F (2017) Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma. Mol Med Rep 15(2):915–921

    Article  CAS  PubMed  Google Scholar 

  31. Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB et al (2010) p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res 70(2):832–841

    Article  CAS  PubMed  Google Scholar 

  32. Cheng G, Gao F, Sun X, Bi H, Zhu Y (2016) Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP2/9 production via the p38 MAPK signaling pathway. Mol Med Rep 14(4):3199–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su Y, Wan D, Song W (2016) Dryofragin inhibits the migration and invasion of human osteosarcoma U2OS cells by suppressing MMP-2/9 and elevating TIMP-1/2 through PI3K/AKT and p38 MAPK signaling pathways. Anticancer Drugs 27(7):660–668

    Article  CAS  PubMed  Google Scholar 

  34. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  CAS  PubMed  Google Scholar 

  35. Hattinger CM, Patrizio MP, Fantoni L, Casotti C, Riganti C, Serra M (2021) Drug resistance in osteosarcoma: emerging biomarkers, therapeutic targets and treatment strategies. Cancers 13(12):2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohanty S, Aghighi M, Yerneni K, Theruvath JL, Daldrup-Link HE (2019) Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don’t eat me’ signals off and ‘eat me’ signals on. Mol Oncol 13(10):2049–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higuchi T, Sugisawa N, Miyake K, Oshiro H, Yamamoto N, Hayashi K et al (2019) Combination treatment with sorafenib and everolimus regresses a doxorubicin-resistant osteosarcoma in a PDOX mouse model. Anticancer Res 39(9):4781–4786

    Article  CAS  PubMed  Google Scholar 

  38. Xu C, Wang M, Guo W, Sun W, Liu Y (2021) Curcumin in osteosarcoma therapy: combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front Oncol 11:672490

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science and ICT (NRF-2022R1F1A1062695). This research was also supported by Gachon University research fund of 2021 (GCU-202104430001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yeol Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Cha, H., Lee, S. et al. Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases. Mol Biol Rep 50, 4029–4038 (2023). https://doi.org/10.1007/s11033-023-08333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08333-4

Keywords

Navigation