Log in

Two complete mitochondrial genomes in Scolopendra and a comparative analysis of tRNA rearrangements in centipedes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Centipedes are one of the oldest terrestrial arthropods belonging to the sub phylum Myriapoda. With the expansion of our understanding of the application of the two centipedes Scolopendra morsitans and Scolopendra hainanum, belonging to the order Scolopendromorpha, an exhaustive classification was required. Although consensus has been reached on the phylogeny of Chilopoda based on morphological traits, recent analyses based on molecular data exhibited differences in results.

Methods and results

The mitochondrial genome sequences of S. morsitans and S. hainanum were obtained by next-generation sequencing. S. morsitans contains 13 PCGs, two rRNAs, 11 tRNAs, and one CR. whereas S. hainanum contains 12 PCGs, of which ATP8 remains unpredicted, two rRNAs, 14 tRNAs, and one CR. An obvious tRNA rearrangement was found in the genus Scolopendra. S. morsitans exhibited a loss of trnW, trnC, trnI, trnK, trnD, trnA, trnN, trnQ, trnF, trnT, trnS, trnL, and trnV, and a repeat of trnR and trnL. S. hainanum exhibited a loss of trnQ, trnC, trnW, trnI, trnD, trnQ, trnP, and trnV. Phylogenetic analyses of centipedes based on 12 PCGs supported the sister relationship between the orders Geophilomorpha and Lithobiomorpha and a close relationship between Scolopendra dehaani and S. hainanum.

Conclusions

The new mitogenomes determined in this study provide new genomic resources for gene rearrangements and contribute to the understanding of the evolution of gene rearrangement in Chilopoda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  2. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  3. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ladoukakis ED, Zouros E (2017) Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res 24:2

    Google Scholar 

  5. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT (2006) Incorporating molecular evolution into phylogenetic analysis and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 37:545–579

    Article  Google Scholar 

  6. Cameron SL (2013) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–119

    Article  PubMed  Google Scholar 

  7. Liu H, Li H, Song F, Gu W, Feng J, Cai W, Shao R (2017) Novel insights into mitochondrial gene rearrangement in thrips (Insecta: Thysanoptera) from the grass thrips, Anaphothrips obscurus. Sci Rep 7(1):4284

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V (2020) Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci Rep 10(1):695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li R, Lei Z, Li W, Zhang W, Zhou C (2021) Comparative mitogenomic analysis of heptageniid mayflies (Insecta: Ephemeroptera): conserved intergenic spacer and tRNA gene duplication. Insects 12(2):170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernández R, Laumer CE, Vahtera V, Libro S, Kaluziak S, Sharma PP, Pérez-Porro AR, Edgecombe GD, Giribet G (2014) Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol Biol Evol 31(6):1500–1513

    Article  PubMed  Google Scholar 

  11. Vélez S, Mesibov R, Giribet G (2012) Biogeography in a continental island: population structure of the relict endemic centipede Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha) in Tasmania using 16S rRNA and COI. J Hered 103(1):80–91

    Article  PubMed  Google Scholar 

  12. Tripathi G, Sharma BM (2005) Effects of habitats and pesticides on aerobic capacity and survival of soil fauna. Biomed Environ Sci 18(3):169–175

    CAS  PubMed  Google Scholar 

  13. Ma JX, Wang B, Ding CF, Jiang XJ, Wang CY, Yu J, Chen QW (2020) Couplet medicines of leech and centipede granules improves erectile dysfunction via inactivation of the CaSR/PLC/PKC signaling in streptozotocin-induced diabetic rats. Biosci Rep. https://doi.org/10.1042/BSR20193845

  14. Giribet G, Edgecombe GD (2006) Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology. Proc R Soc B 273(1586):531–538

    Article  CAS  PubMed  Google Scholar 

  15. Hu C, Wang S, Huang B, Liu H, Xu L, Hu Z, Liu Y (2020) The complete mitochondrial genome sequence of Scolopendra mutilans L. Koch, 1878 (Scolopendromorpha, Scolopendridae), with a comparative analysis of other centipede genomes. ZooKeys 925(2):73–88

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kang S, Liu Y, Zeng X, Deng H, Luo Y, Chen K, Chen S (2017) Taxonomy and identification of the genus Scolopendra in China using integrated methods of external morphology and molecular phylogenetics. Sci Rep 7(1):16032

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  19. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20(1):348–355

    Article  PubMed  Google Scholar 

  23. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F (2018) MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol 35(10):2582–2584

  25. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  28. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30(5):1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  30. Araujo NS, Arias MC (2019) Mitochondrial genome characterization of Melipona bicolor: insights from the control region and gene expression data. Gene 705:55–59

    Article  CAS  PubMed  Google Scholar 

  31. Li K, Liang AP (2018) Hemiptera mitochondrial control region: new sights into the structural organization, phylogenetic utility, and roles of tandem repetitions of the noncoding segment. Int J Mol Sci 19(5):1292

    Article  PubMed Central  Google Scholar 

  32. Campbell NJ, Barker SC (1998) An unprecedented major rearrangement in an arthropod mitochondrial genome. Mol Biol Evol 15(12):1786–1787

    Article  CAS  PubMed  Google Scholar 

  33. Shao R, Campbell NJ, Schmidt ER, Barker SC (2001) Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol 18(9):1828–1832

    Article  CAS  PubMed  Google Scholar 

  34. Takanashi H, Arimura S, Sakamoto W, Tsutsumi N (2006) Different amounts of DNA in each mitochondrion in rice root. Genes Genet Syst 81(3):215–218

    Article  CAS  PubMed  Google Scholar 

  35. Sharp PM, Li WH (1987) The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Xu N, Zhang Q, Wang G, Xu H, Ruan H (2020) Characterization of the complete mitochondrial genome of Drawida gisti (Metagynophora, Moniligastridae) and comparison with other Metagynophora species. Genomics 112(5):3056–3064

    Article  CAS  PubMed  Google Scholar 

  37. Fernández R, Edgecombe GD, Giribet G (2016) Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Syst Biol 65(5):871–889

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gai Y, Ma H, Ma J, Li C, Yang Q (2014) The complete mitochondrial genome of Scolopocryptops sp. (Chilopoda: Scolopendromorpha: Scolopocryptopidae). Mitochondrial DNA 25(3):192–193

    Article  CAS  PubMed  Google Scholar 

  39. Robertson HE, Lapraz F, Rhodes AC, Telford MJ (2015) The complete mitochondrial genome of the geophilomorph centipede Strigamia maritima. PLoS ONE 10(3):e0121369

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gai Y, Ma H, Sun X, Ma J, Yang Q (2013) The complete mitochondrial genome of Cermatobius longicornis (Chilopoda: Lithobiomorpha: Henicopidae). Mitochondrial DNA 24(4):331–332

    Article  CAS  PubMed  Google Scholar 

  41. Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97(25):13738–13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Negrisolo E, Minelli A, Valle G (2004) The mitochondrial genome of the house centipede scutigera and the monophyly versus paraphyly of myriapods. Mol Biol Evol 21(4):770–780

    Article  CAS  PubMed  Google Scholar 

  43. Dong Y, Zhu L, Bai Y, Ou Y, Wang C (2016) Complete mitochondrial genomes of two flat-backed millipedes by next-generation sequencing (Diplopoda, Polydesmida). Zookeys 637:1–20

    Article  Google Scholar 

Download references

Funding

This study was supported by the Higher Education Reform Project of Education Department of Jiangsu Province (2021JSJG249) and the Innovation and Entrepreneurship Training Program for College Students of China (202110298111Y).

Author information

Authors and Affiliations

Authors

Contributions

JD: funding acquisition, formal analysis, writing—original draft HL: methodology and formal analysis WX: formal analysis, writing–original draft. YC: validation. HW: validation. HJ: formal analysis. JW: formal analysis. YW: funding acquisition. HL: conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Hongyi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethics committee of Nan**g Forestry University.

Research involving animal rights

No animals were killed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Lan, H., Xu, W. et al. Two complete mitochondrial genomes in Scolopendra and a comparative analysis of tRNA rearrangements in centipedes. Mol Biol Rep 49, 6173–6180 (2022). https://doi.org/10.1007/s11033-022-07409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07409-x

Keywords

Navigation