Log in

Vitexin enhances osteoblast differentiation through phosphorylation of Smad and expression of Runx2 at in vitro and ex vivo

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vitexin (apigenin-8-C-d-glucopyranoside) is a flavonoid isolated from natural sources. It has been employed as an anti-oxidant, anti-inflammatory, and anti-cancer agent, and is used as a traditional Chinese medicine to treat a variety of illnesses. The present study investigated the effect of vitexin on osteoblast differentiation of C3H10T1/2 mesenchymal stem cells, MC3T3-E1 preosteoblast, mouse calvarial primary cells, and primary bone marrow stem cells (BMSCs). RT-PCR and quantitative PCR demonstrated that vitexin increased mRNA expression of the osteogenic genes distal-less homeobox 5 (Dlx5) and Runxt-related transcription factor 2 (Runx2). Vitexin also increased the Dlx5 and Runx2 protein levels, Smad1/5/9 phosphorylation, and alkaline phosphatase (ALP) activity. In addition, vitexin increased Runx2-luciferase activity. Moreover, knockdown of Runx2 attenuated the increase in ALP activity induced by vitexin. These results demonstrate that vitexin enhances osteoblast differentiation via Runx2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MSC:

Mesenchymal stem cell

BMSC:

Bone marrow stromal cell

BMP:

Bone morphogenetic proteins

Runx2:

Runt-related transcription factor 2

TNF-α:

Tumour necrosis factor-α

ALP:

Alkaline phosphatase

DMEM:

Dulbecco's Modified Eagle's Medium

Dlx5:

Distal-less homeobox 5

DMSO:

Dimethyl sulfoxide

Smad:

Small mothers against

FBS:

Fetal bovine serum

References

  1. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220. https://doi.org/10.1146/annurev.cellbio.16.1.191

    Article  CAS  PubMed  Google Scholar 

  2. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthrit Res Ther 9(Suppl 1):S6. https://doi.org/10.1186/ar2170

    Article  CAS  Google Scholar 

  3. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Investig 127(6):2030–2039. https://doi.org/10.1172/JCI93356

    Article  PubMed  Google Scholar 

  4. Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15(4):1858–1869. https://doi.org/10.1128/mcb.15.4.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106(6):2139–2151. https://doi.org/10.1083/jcb.106.6.2139

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  7. Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, Franceschi RT (2012) Biomechanical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res 27(6):1263–1274. https://doi.org/10.1002/jbmr.1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23(24):4315–4329. https://doi.org/10.1038/sj.onc.1207676

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66(1):1–8

    Article  CAS  Google Scholar 

  10. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754. https://doi.org/10.1016/s0092-8674(00)80257-3

    Article  CAS  PubMed  Google Scholar 

  11. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274(11):6972–6978. https://doi.org/10.1074/jbc.274.11.6972

    Article  CAS  PubMed  Google Scholar 

  12. He M, Min JW, Kong WL, He XH, Li JX, Peng BW (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85. https://doi.org/10.1016/j.fitote.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  13. Ganesan K, Xu B (2017) Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci 1401(1):102–113. https://doi.org/10.1111/nyas.13446

    Article  CAS  PubMed  Google Scholar 

  14. Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW (2015) Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 99:38–50. https://doi.org/10.1016/j.neuropharm.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Bao B, Lu B, Ren Y, Tie X, Zhang Y (2005) Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. J Chromatogr A 1065(2):177–185

    Article  CAS  Google Scholar 

  16. Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MS, **e-Filho P, Casagrande R, Verri WA Jr (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 76(6):1141–1149. https://doi.org/10.1021/np400222v

    Article  CAS  PubMed  Google Scholar 

  17. Jiang J, Jia Y, Lu X, Zhang T, Zhao K, Fu Z, Pang C, Qian Y (2019) Vitexin suppresses RANKL-induced osteoclastogenesis and prevents lipopolysaccharide (LPS)-induced osteolysis. J Cell Physiol. https://doi.org/10.1002/jcp.28378

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maridas DE, Rendina-Ruedy E, Le PT, Rosen CJ (2018) Isolation, culture, and differentiation of bone marrow stromal cells and osteoclast progenitors from mice. J Vis Exp. https://doi.org/10.3791/56750

    Article  PubMed  PubMed Central  Google Scholar 

  19. Erceg I, Tadic T, Kronenberg MS, Marijanovic I, Lichtler AC (2003) Dlx5 regulation of mouse osteoblast differentiation mediated by avian retrovirus vector. Croat Med J 44(4):407–411

    PubMed  Google Scholar 

  20. Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM, Sung JH, Wozney JM, Kim HJ, Ryoo HM (2003) BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278(36):34387–34394. https://doi.org/10.1074/jbc.M211386200

    Article  CAS  PubMed  Google Scholar 

  21. Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rodan GA, Noda M (1991) Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr 1(2):85–98

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Daegu University Research Grant 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Gu Jang.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KM., Son, HE., Min, HY. et al. Vitexin enhances osteoblast differentiation through phosphorylation of Smad and expression of Runx2 at in vitro and ex vivo. Mol Biol Rep 47, 8809–8817 (2020). https://doi.org/10.1007/s11033-020-05929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05929-y

Keywords

Navigation