Log in

MicroRNA-203a regulates pancreatic β cell proliferation and apoptosis by targeting IRS2

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet β cells. We sought to characterize the function of microRNA-203a (miR-203a) on pancreatic islet β cell proliferation and apoptosis. In situ hybridization was used to detect the expression of miR-203a in islet β cells in normal and hyperglycaemic non-obese diabetic (NOD) mice. Cell proliferation was measured by cell counting kit eight and cell apoptosis was detected using flow cytometry. Insulin receptor substrate 2 (IRS2/Irs2) was determined to be a direct target of miR-203a by Luciferase reporter assay. We detected the effects of miR-203a overexpression or inhibition on proliferation and apoptosis of IRS2-overexpressing or IRS2-knockdown MIN6 cells respectively, and preliminarily explored the downstream targets of the IRS2 pathway. NOD mice model was used to detect miR-203a inhibitor treatment for diabetes. Our experiment showed miR-203a was upregulated in pancreatic β cells of hyperglycaemic NOD mice. Elevated miR-203a expression inhibited the proliferation and promoted the apoptosis of MIN6 cells. IRS2/Irs2 is a novel target gene directly regulated by miR-203a and miR-203a overexpression downregulated the expression of IRS2. Irs2 silencing reduced cell proliferation and increased apoptosis. Irs2 overexpression could abolish the pro-apoptotic and anti-proliferative effects of miR-203a on MIN6 cells. Hyperglycemia in newly hyperglycemic NOD mice was under control after treatment with miR-203a inhibitor. Our study suggests that miR-203a regulates pancreatic β cell proliferation and apoptosis by targeting IRS2, treatment with miR-203a inhibitors and IRS2 might provide a new therapeutic strategy for T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T1DM:

Type 1 diabetes mellitus

miR-203a:

MicroRNA-203a

NOD mice:

Non-obese diabetic mice

IRS2:

Insulin receptor substrate 2

mTOR:

Mammalian target of rapamycin

References

  1. Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101

    Article  CAS  Google Scholar 

  2. DiMeglio LA, Evans-Molina C, Oram RA (2018) Type 1 diabetes. Lancet 391:2449–2462

    Article  Google Scholar 

  3. Mathis D, Vence L, Benoist C (2001) beta-Cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  Google Scholar 

  4. Zhang R, Hardin H, Huang W, Buehler D (2018) Lloyd RV long non-coding RNA linc-ROR is upregulated in papillary thyroid carcinoma. Endocr Pathol 29:1–8

    Article  Google Scholar 

  5. Ruan W, Xu JM, Li SB et al (2012) Effects of down-regulation of microRNA-23a on TNF-alpha-induced endothelial cell apoptosis through caspase-dependent pathways. Cardiovasc Res 93:623–632

    Article  CAS  Google Scholar 

  6. Li H, **e H, Liu W et al (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677

    Article  CAS  Google Scholar 

  7. Zhu Y, Zhang S, Li Z et al (2019) miR-125b-5p and miR-99a-5p downregulate human gammadelta T-cell activation and cytotoxicity. Cell Mol Immunol 16(2):112–125

    Article  CAS  Google Scholar 

  8. Serr I, Furst RW, Ott VB et al (2016) miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci USA 113:E6659–E6668

    Article  CAS  Google Scholar 

  9. Samandari N, Mirza AH, Nielsen LB et al (2017) Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 60:354–363

    Article  CAS  Google Scholar 

  10. Zheng Y, Wang Z, Tu Y et al (2015) miR-101a and miR-30b contribute to inflammatory cytokine-mediated beta-cell dysfunction. Lab Invest 95:1387–1397

    Article  CAS  Google Scholar 

  11. Zhao L, Yu H, Yi S et al (2016) The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget 7:45370–45384

    Article  Google Scholar 

  12. Shirakawa J, Terauchi Y (2017) Glucose- or insulin resistance-mediated beta-cell replication: PKCzeta integrates the proliferative signaling. J Diabetes Investig 8:149–151

    Article  Google Scholar 

  13. White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711

    Article  CAS  Google Scholar 

  14. Stamateris RE, Sharma RB, Kong Y et al (2016) Glucose induces mouse beta-cell proliferation via IRS2, MTOR, and cyclin D2 but not the insulin receptor. Diabetes 65:981–995

    Article  CAS  Google Scholar 

  15. Covach A, Patel S, Hardin H (2017) Lloyd RV phosphorylated mechanistic target of rapamycin (p-mTOR) and noncoding RNA expression in follicular and hurthle cell thyroid neoplasm. Endocr Pathol 28:207–212

    Article  CAS  Google Scholar 

  16. Cosimo E, Tarafdar A, Moles MW et al (2019) AKT/mTORC2 inhibition activates FOXO1 function in CLL cells reducing B cell receptor-mediated survival. Clin Cancer Res 25(5):1574–1587

    Article  CAS  Google Scholar 

  17. Yoon MS (2017) The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients 9(11):1176

    Article  Google Scholar 

  18. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  CAS  Google Scholar 

  19. Lin Y, Sun Z (2015) Antiaging gene klotho attenuates pancreatic beta-cell apoptosis in type 1 diabetes. Diabetes 64:4298–4311

    Article  CAS  Google Scholar 

  20. Zhang J, Zhang N, Liu M et al (2012) Disruption of growth factor receptor-binding protein 10 in the pancreas enhances beta-cell proliferation and protects mice from streptozotocin-induced beta-cell apoptosis. Diabetes 61:3189–3198

    Article  CAS  Google Scholar 

  21. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  Google Scholar 

  22. Nesca V, Guay C, Jacovetti C et al (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56:2203–2212

    Article  CAS  Google Scholar 

  23. Sand M, Gambichler T, Sand D et al (2009) MicroRNAs and the skin: tiny players in the body's largest organ. J Dermatol Sci 53:169–175

    Article  CAS  Google Scholar 

  24. Sonkoly E, Stahle M, Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18:131–140

    Article  CAS  Google Scholar 

  25. Demozay D, Tsunekawa S, Briaud I et al (2011) Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet beta-cells. Diabetes 60:2892–2902

    Article  CAS  Google Scholar 

  26. Jain S, Ruiz de Azua I, Lu H et al (2013) Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J Clin Invest 123(4):1750–1762

    Article  CAS  Google Scholar 

  27. Nakamura A, Terauchi Y (2015) Present status of clinical deployment of glucokinase activators. J Diabetes Investig 6:124–132

    Article  CAS  Google Scholar 

  28. Norquay LD, D'Aquino KE, Opare-Addo LM et al (2009) Insulin receptor substrate-2 in beta-cells decreases diabetes in nonobese diabetic mice. Endocrinology 150:4531–4540

    Article  CAS  Google Scholar 

  29. Yang F, Takagaki Y, Yoshitomi Y et al (2019) Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR axis. Cancer Res 79(4):735–746

    Article  CAS  Google Scholar 

  30. D'Agati VD, Chagnac A, de Vries AP et al (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12:453–471

    Article  CAS  Google Scholar 

  31. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  Google Scholar 

  32. Dong G, Liu Y, Zhang L et al (2015) mTOR contributes to ER stress and associated apoptosis in renal tubular cells. Am J Physiol Renal Physiol 308:F267–F274

    Article  CAS  Google Scholar 

  33. McIntosh CH, Widenmaier S, Kim SJ (2012) Glucose-dependent insulinotropic polypeptide signaling in pancreatic beta-cells and adipocytes. J Diabetes Investig 3:96–106

    Article  CAS  Google Scholar 

  34. Ardestani A, Lupse B, Kido Y et al (2018) mTORC1 signaling: a double-edged sword in diabetic beta cells. Cell Metab 27:314–331

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Youth Foundation of China (81402272, 81702797), the Hunan Provincial Natural Science Foundation of China (2018JJ3745,2018JJ2213) and the New **angya Talent Project Funding of the Third **angya Hospital of Central South University (JY201627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Zhao, L., **, W. et al. MicroRNA-203a regulates pancreatic β cell proliferation and apoptosis by targeting IRS2. Mol Biol Rep 47, 7557–7566 (2020). https://doi.org/10.1007/s11033-020-05818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05818-4

Keywords

Navigation