Log in

Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Tocopherols are a group of lipid-soluble compounds and they are essential for human nutrition. Tocopherols are also well known as powerful antioxidants associated with ascorbate and glutathione, which protect plants from oxygen toxicity. However, an increasing amount of research suggests that tocopherols play roles in stress resistance far beyond their antioxidative activity. This work focuses on the tocopherol biosynthetic pathway, the activities of their different forms, and their roles in response to abiotic and biotic stresses. Here, we made an overview of three major tocopherol-related retrograde signaling pathways which were mediated by plant hormones, reactive oxygen species (ROS), and microRNAs (miRNAs), respectively. Furthermore, the available information on the progress of genetic engineering of tocopherol in plants was summarized. Finally, we identified questions that need to be addressed and discussed the prospective methods for tocopherol biofortification in plants. This review highlights the multifaceted role of tocopherols, which will facilitate further elucidating the functions of genes and direction of crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal PK, JHA B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plantarum 54:201–212

    CAS  Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19:47–64

    CAS  Google Scholar 

  • Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190

    PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bradbeer JW, Atkinson YA, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptide may be controlled by plastid-synthesized RNA. Nature 279:816–817

    CAS  Google Scholar 

  • Burton GW, Ingold KU (1986) Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Accounts Chem Res 197:194–201

    Google Scholar 

  • Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10:357–382

    PubMed  CAS  Google Scholar 

  • Cela J, Falk J, Munné-Bosch S (2009) Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett 583:992–996

    PubMed  CAS  Google Scholar 

  • Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cela J, Tweed JKS, Sivakumaran A, Lee MRF, Mur LAJ, Munné-Bosch S (2018) An altered tocopherol composition in chloroplasts reduces plant resistance to Botrytis cinerea. Plant Physiol Bioch 127:200–210

    CAS  Google Scholar 

  • Century B, Horwitt MK (1965) Biological availability of various forms of vitamin E with respect to different indices of deficiency. Fed Proc 24:906–911

    PubMed  CAS  Google Scholar 

  • Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol 67:25–53

    PubMed  CAS  Google Scholar 

  • Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    PubMed  PubMed Central  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2003a) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2003b) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    PubMed  PubMed Central  CAS  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20

    PubMed  CAS  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Müller M, Abdelly C, Munné-Bosch S (2013) Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal Behav. https://doi.org/10.4161/psb.23136

    Google Scholar 

  • Espinoza A, Martín AS, López-Climent M, Ruiz-Lara S, Gómez-Cadenas A, Casaretto JA (2013) Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco. J Plant Physiol 170:1285–1294

    PubMed  CAS  Google Scholar 

  • Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011) Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23:3992–4012

    PubMed  PubMed Central  CAS  Google Scholar 

  • Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651

    PubMed  CAS  Google Scholar 

  • Evans JC, Kodali DR, Addis PB (2002) Optimal tocopherol concentrations to inhibit soybean oil oxidation. J Am Oil Chem Soc 79:47–51

    CAS  Google Scholar 

  • Falk J, Krauß N, Dähnhardt D, Krupinska K (2002) The senescence associated gene of barley encoding 4-hydroxyphenyl-pyruvate dioxygenase is expressed during oxidative stress. Plant Physiol 159:1245–1253

    Google Scholar 

  • Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett 540:35–40

    PubMed  CAS  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fang X, Zhao G, Zhang S, Li Y, Gu H, Li Y, Zhao Q, Qi Y (2019) Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis. Dev Cell 48:371–382

    PubMed  CAS  Google Scholar 

  • Farré G, Sudhakar D, Naqvi S, Sandmann G, Christou P, Capell T, Zhu C (2012) Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels. Transgenic Res 21:1093–1097

    PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    PubMed  CAS  Google Scholar 

  • García-Andrade J, Ramírez V, Flors V, Vera P (2011) Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J 67:783–794

    PubMed  Google Scholar 

  • Ghimire BK, Seong ES, Lee CO, Lee JG, Yu CY, Kim SH, Chung IM (2015) Improved antioxidant activity in transgenic Perilla frutescens plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene. Protoplasma 252:1285–1290

    PubMed  CAS  Google Scholar 

  • Ghimire BK, Son NY, Kim SH, Yu CY, Chung IM (2017a) Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene. 3 biotech. https://doi.org/10.1007/s13205-017-0795-5

  • Ghimire BK, Yu CY, Chung IM (2017b) Assessment of the phenolic profile, antimicrobial activity and oxidative stability of transgenic Perilla frutescens L.overexpressing tocopherol methyltransferase (γ-tmt) gene. Plant Physiol Bioch 118:77–87

    CAS  Google Scholar 

  • Ghimire BK, Seong ES, Yu CY, Kim SH, Chung IM (2017c) Evaluation of phenolic compounds and antimicrobial activities in transgenic Codonopsis lanceolata plants via overexpression of the γ-tocopherolmethyltransferase (γ-tmt) gene. S Afr J Bot 109:25–33

    CAS  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606–1615

    PubMed  PubMed Central  CAS  Google Scholar 

  • Griewahn J, Daubert BF (1948) Delta-tocopherol as an antioxidant in lard. J Am Oil Chem Soc 25:26–27

    CAS  Google Scholar 

  • Huang SW, Frankel EN, German JB (1994) Antioxidant activity of alpha- and gamma-tocopherols in bulk oils and in oil-in-water emulsions. J Agr Food Chem 42:2108–2114

    CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    PubMed  CAS  Google Scholar 

  • Jalmi SK, Sinha AK (2015) ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00769

  • Jia H, Wang X, Gao H, Dong J, Wang Y, Liu J, Shi Y (2012) Cloning the gene of γ-tocopherol methyltransferase (γ-TMT) from alfalfa and expression analysis in adverse situations. Acta Pratacul Sin 21:198–206

    Google Scholar 

  • Jiang J, Jia H, Feng G, Wang Z, Li J, Gao H, Wang X (2016) Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence. Plant Sci 249:93–104

    PubMed  CAS  Google Scholar 

  • Jiang J, Chen Z, Ban L, Wu Y, Huang J, Chu J, Fang S, Wang Z, Gao H, Wang X (2017) P-HYDROXYPHENYLPYRUVATE DIOXYGENASE from Medicago sativa is involved in vitamin E biosynthesis and abscisic acid-mediated seed germination. Sci Rep 7:1–15. https://doi.org/10.1038/srep40625

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    PubMed  CAS  Google Scholar 

  • Kaiser S, Di Mascio P, Murphy ME, Sies H (1990) Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch Biochem Biophys 277:101–108

    PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khalatbari AA, Jaafar HZE, Khalatbari AM, Mahmood M, Othman R (2015) Wild type and vte4 mutant Arabidopsis thaliana responses to different water frequencies: genetic engineering towards stress tolerance. J Soil Sci Plant Nut 15:991–1006

    CAS  Google Scholar 

  • Khalatbari AA, Jaafar HZE, Khalatbari AM, Mahmood M, Othman R (2016) Analysis of secondary metabolism and total chlorophyll content provides new insights into the role of A-tocopherol for wild type and VTE4 mutant Arabidopsis thaliana under different abiotic stresses. Genetika 48:445–462

    Google Scholar 

  • Kim HJ, Lee HO, Min DB (2007) Effects and prooxidant mechanisms of oxidized α-tocopherol on the oxidative stability of soybean oil. J Food Sci 72:C223–C230

    PubMed  CAS  Google Scholar 

  • Kleine T, Leister D (2016) Retrograde signaling: organelles go networking. Biochim Biophys Acta 1857:1313–1325

    PubMed  CAS  Google Scholar 

  • Krishnamurthy A, Rathinasabapath B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav. https://doi.org/10.4161/psb.25761

    Google Scholar 

  • Kulås E, Ackman RG (2001) Properties of α-, γ-, and δ-tocopherol in purified fish oil triacylglycerols. J Am Oil Chem Soc 78:361–367

    Google Scholar 

  • Kurihara Y (2017) Activity and roles of Arabidopsis thaliana XRN family exoribonucleases in noncoding RNA pathways. J Plant Res 130:25–31

    PubMed  CAS  Google Scholar 

  • Lea CH, Ward RJ (1959) Relative antioxidant activity of the seven tocopherols. J Sci Food Agric. https://doi.org/10.1002/jsfa.2740101007

    CAS  Google Scholar 

  • Lee BK, Kim SL, Kim KH, Yu SH, Lee SC, Zhang Z, Kim MS, Park HM, Lee JY (2008) Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell Tiss Org 92:47–54

    CAS  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    PubMed  CAS  Google Scholar 

  • Li Q, Yang XH, Xu ST, Cai Y, Zhang DL, Han YJ, Li L, Zhang ZX, Gao SB, Li JS, Yan JB (2012) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One. https://doi.org/10.1371/journal.pone.0036807

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Zhou Y, Wang Z, Sun X, Tang K (2010) Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci 178:312–320

    CAS  Google Scholar 

  • Liu XL, Hua XJ, Guo J, Qi DM, Wang LJ, Liu ZP, ** ZP, Chen SY, Liu GS (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol Lett 30:1275–1280

    PubMed  CAS  Google Scholar 

  • Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628

    CAS  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    PubMed  CAS  Google Scholar 

  • Mène-Saffrané L, Pellaud S (2017) Current strategies for vitamin E biofortification of crops. Curr Opin Biotechnol 44:189–197

    PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. https://doi.org/10.1126/scisignal.2000448

    PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  • Munné-Bosch S, Weiler EW, Alegre L, Müller M, Düchting P, Falk J (2007) Alpha-tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225:681–691

    PubMed  Google Scholar 

  • Mur LA, Laarhoven LJ, Harren FJ, Hall MA, Smith AR (2008) Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant Physiol 148:1537–1546

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. https://doi.org/10.1104/pp.108.129791

    PubMed  PubMed Central  CAS  Google Scholar 

  • Naqvi S, Farré G, Zhu C, Sandmann G, Capell T, Christou P (2011) Simultaneous expression of Arabidopsis ρ-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20:177–181

    PubMed  CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    PubMed  CAS  Google Scholar 

  • Oracz K, Karpiński S (2016) Phytohormones signaling pathways and ROS involvement in seed germination. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00864

  • Ouyang S, He S, Liu P, Zhang W, Zhang J, Chen S (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci 54:181–188

    PubMed  CAS  Google Scholar 

  • Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen THH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604

    PubMed  CAS  Google Scholar 

  • Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci U S A 99:12495–12500

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8

    PubMed  CAS  Google Scholar 

  • Ren W, Zhao L, Zhang L, Wang Y, Cui L, Tang Y, Sun X, Tang K (2011a) Molecular cloning and characterization of 4-hydroxyphenylpyruvate dioxygenase gene from Lactuca sativa. J Plant Physiol 168:1076–1083

    PubMed  CAS  Google Scholar 

  • Ren W, Zhao L, Zhang L, Wang Y, Cui L, Tang Y, Sun X, Tang K (2011b) Molecular analysis of a homogentisate phytyltransferase gene from Lactuca sativa L. Mol Biol Rep 38:1813–1819

    PubMed  CAS  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F, Joly RJ, Hasegawa PM, Bressan RA, Maggio A (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol 136:3134–3147

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saeidnejad AH, Rajaei P (2015) Antioxidative responses to drought and salinity stress in plants, a comprehensive review. Intl J Life Sci 9:1–8

    Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sereflioglu S, Dinler BS, Tasci E (2017) Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots. Acta Biol Hung 68:115–125

    PubMed  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    PubMed  CAS  Google Scholar 

  • Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC 6803. FEBS Lett 511:1–5

    PubMed  CAS  Google Scholar 

  • Singh RK, Ali SA, Nath P, Sane VA (2011) Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango. J Exp Bot 62:3375–3385

    PubMed  PubMed Central  CAS  Google Scholar 

  • Soll J, Kemmerling M, Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204:544–550

    PubMed  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamaoki M (2008) The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal Behav 3:166–174

    PubMed  PubMed Central  Google Scholar 

  • Tang Y, Fu X, Shen Q, Tang K (2016) Roles of MPBQ-MT in promoting α/γ-tocopherol production and photosynthesis under high light in lettuce. PLoS One. https://doi.org/10.1371/journal.pone.0148490

    PubMed  PubMed Central  Google Scholar 

  • Tang YL, Ren WW, Zhang L, Tang KX (2011) Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa). Genet Mol Res 10:3204–3212

    PubMed  CAS  Google Scholar 

  • Tewari K, Kumar V, Kumar A, Bansal N, Vinutha T, Ali K, Sachdev A, Kumari S, Dahuja A (2018) Molecular cloning and functional analysis of the promoter of γ-tocopherol methyl transferase (γ-TMT) gene of soybean (Glycine max). 3 Biotech. https://doi.org/10.1007/s13205-018-1347-3

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact 15:27–34

    PubMed  CAS  Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Bioch 40:913–920

    CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    PubMed  PubMed Central  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    PubMed  PubMed Central  Google Scholar 

  • Vom Dorp K, Hölzl G, Plohmann C, Eisenhut M, Abraham M, Weber AP, Hanson AD, Dörmann P (2015) Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell 27:2846–2859

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D, Wang Y, Long W, Niu M, Zhao Z, Teng X, Zhu X, Zhu J, Hao Y, Wang Y, Liu Y, Jiang L, Wang Y, Wan J (2017) SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice. Plant Sci 260:90–100

    PubMed  CAS  Google Scholar 

  • Wang H, Xu ST, Fan YM, Liu NN, Zhan W, Liu HJ, **ao YJ, Li K, Pan Q, Li WQ, Deng M, Liu J, ** M, Yang XH, Li JS, Li Q, Yan JB (2018) Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J 16:1464–1475

    PubMed  PubMed Central  CAS  Google Scholar 

  • Woo HJ, Kim JK, Sohn SI, Shin KS, Kim BG, Lim MH (2014) Expression of tobacco tocopherol cyclase in rice regulates antioxidative defense and drought tolerance. Plant Cell Tiss Org 119:257–267

    CAS  Google Scholar 

  • **ao Y, Di P, Chen J, Liu Y, Chen W, Zhang L (2009) Characterization and expression profiling of 4-hydroxyphenylpyruvate dioxygenase gene (Smhppd) from Salvia miltiorrhiza hairy root cultures. Mol Biol Rep 36:2019–2029

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    PubMed  CAS  Google Scholar 

  • Zakrzewska-Placzek M, Souret FF, Sobczyk GJ, Green PJ, Kufel J (2010) Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 38:4487–4502

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Raboanatahiry N, Zhu B, Li MT (2017) Progress in genome editing techenology and its application in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00177

  • Zhang L, Luo Y, Zhu Y, Zhang L, Zhang W, Chen R, Xu M, Fan Y, Wang L (2013) GmTMT2a from soybean elevates the α-tocopherol content in corn and Arabidopsis. Transgenic Res 22:1021–1028

    PubMed  CAS  Google Scholar 

  • Zhou ML, Ma JT, Pang JF, Zhang ZL, Tang YX, Wu YM (2010) Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotechnol 9:9255–9279

    CAS  Google Scholar 

  • Zhu Q, Zhang J, Yu H, Li L, Chen X, Jiang M, Tan M (2019) Maize Cd-tolerant ZmVTE4 encoding γ-tocopherol-methyl-transferase alleviated Cd-toxicity through its product α-tocopherol. Environ Exp Bot 158:171–179

    CAS  Google Scholar 

  • Zorrilla-López U, Masip G, Arjó G, Bai C, Banakar R, Bassie L, Berman J, Farré G, Miralpeix B, Pérez-Massot E, Sabalza M, Sanahuja G, Vamvaka E, Twyman RM, Christou P, Zhu C, Capell T (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. **angning Liu (Research School of Biology, The Australian National University) for critical reading and constructive suggestions.

Funding

This work was supported by the grants from Earmarked Fund for China Agriculture Research System (CARS34), National Crop Germplasm Resources Center (NICGR-78), National Program for Forage germplasm Conservation (2130135), and the Agricultural Science and Technology Innovation Program (ASTIP-IAS10).

Author information

Authors and Affiliations

Authors

Contributions

JM and YQ conceived, wrote, and organized the contents of the manuscript. HG and XW retrieved and analyzed promoter sequences and prepared the figures. XW, DQ, and YP revised the manuscript critically.

Corresponding authors

Correspondence to Xuemin Wang or Yuchang Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 55.4 kb)

ESM2

(DOCX 71.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Qiu, D., Pang, Y. et al. Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants. Mol Breeding 40, 18 (2020). https://doi.org/10.1007/s11032-019-1097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1097-x

Keywords

Navigation