Log in

Haplotype analysis of a major and stable QTL underlying soybean (Glycine max) seed oil content reveals footprint of artificial selection

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Improvement of soybean seed oil content was a major goal in soybean breeding. In this study, a recombinant inbred line (RIL) population derived from elite cultivar “Jidou 12” and landrace accession “Heidou” was used to identify major and stable QTL underlying oil content via linkage analysis across four environments. Of the six QTL associated with oil content, only qOIL_8_1 flanked by Satt177 and Satt341 was detected across four environments and explained a high percentage of phenotypic variance. The Jidou 12 allele could increase average oil content by 7.2 mg g−1 compared with the Heidou allele and had no significant drag on protein content. Eight quantitative trait nucleotides (QTNs) were associated with oil content underlying qOIL_8_1 via genome wide association study (GWAS) of four soybean panels. Among these, three located in the same haplotype block from Chr08_8291045 to Chr08_8512373. A strong domestication selection footprint in the block was detected as indicated by high Fst values, and significant difference of haplotype frequency between wild and landrace soybean in the region. This study will facilitate selection of soybean parent and breeding lines for seed oil content improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alessandro V, Dry IB, Marianna F, Sara Z, Margherita L (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12(1):130

    Article  Google Scholar 

  • Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J, Lorenz A (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome, 8(3)

    Article  CAS  Google Scholar 

  • Bethke G, Thao A, **ong GY, Li BH, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M, Glazebrook J (2016) Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana. Plant Cell 28(2):537–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association map** of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chang RZ, Sun JY (1991) Catalogues of Chinese soybean germplasm and resources: continuation I. China Agricultural Press, Bei**g, China

    Google Scholar 

  • Chang RZ, Sun JY, Qiu LJ, Chen YW (1996) Catalogues of Chinese soybean germplasm and resources: continuation II. China Agricultural Press, Bei**g, China

    Google Scholar 

  • Cregan P, Jarvik T, Bush A, Shoemaker R, Lark K, Kahler A, Kaya N, VanToai T, Lohnes D, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Dong Y, Yang X, Liu J, Wang BH, Liu BL, Wang YZ (2013) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5:3352

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Han Y, **e D, Teng W, Zhang S, Chang W, Li W (2011) Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor Appl Genet 122(8):1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hymowitz T, Dudley JW, Collins FI, Brown CM (1974) Estimations of protein and oil concentration in corn, soybean, and oat seed by near-infrared light reflectance. Crop Sci 14:713–715

    Article  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103(45):16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14:579

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang HZ, Yong-Liang YU, Wang SF, Lian Y, Wang TF, Wei YL, Gong PT, Liu XY, Fang XJ, Zhang MC (2010) QTL map** of isoflavone, oil and protein contents in soybean. J Integr Agric 9(8):1108–1116

    CAS  Google Scholar 

  • Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval map** of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86(8):907–913

    Article  CAS  PubMed  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10(3):235–322

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK:A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A, Melton R, Osbourn A (2006) A different function for a member of an ancient and highly conserved cytochrome p450 family: from essential sterols to plant defense. Proc Natl Acad Sci U S A 103(49):18848–18853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lützmeindl U, Léonard R, Tenhaken R (2011) Down-regulation of udp-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides. J Biol Chem 286(2):39982–39992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute Inc. (2011) SAS/STAT 9.3 User’s guide: survey data analysis. SAS Publishing, Cary, NC: SAS Institute Inc

  • Song, QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB, (2004) A new integrated genetic linkage mapof the soybean. Theor Appl Genet 109:122–128.

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genoty** array for soybean. PLoS One 8(1):e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3 genes, genomes. Genetics 5(10):1999–2006

    Google Scholar 

  • Song Q, Jerry J, Jia G, Hyten DL, Vince P, Jackson SA, Schmutz J, Cregan PB (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly glyma1.01. BMC Genomics 17(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun LJ, Miao ZY, Cai CM, Zhang DJ, Zhao MX, Wu YY, Zhang XL, Swarm SA, Zhou LW, Zhang ZY, Nelson RL, Ma JX (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47:939–945

    Article  CAS  PubMed  Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53(2):133–140

    Article  CAS  Google Scholar 

  • Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, Mcclean PE, Qiu LJ, Ma JX (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107(19):8563–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Basten C, Zeng Z (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

  • Wilcox JR (2001) Sixty years of improvement in publicly developed elite soybean lines. Crop Sci 41:1711–1716

    Article  Google Scholar 

  • Xuan L, Zhang C, Yan T, Wu D, Hussain N, Li Z, Chen M, Pan J, Jiang L (2018) TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ 41(12):2773–2790

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Deng Y, Song Q, Cregan PB, Chen P, Lei Y, Yang C, Chen Q, Di R, Liu B (2016) Identifying and validating a quantitative trait locus on chromosome 14 underlying stearic acid in a soybean landrace. J Crop Improv 30(2):152–164

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association map** that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang DJ, Sun LJ, Li S, Wang WD, Ding YH, Swarm SA, Li LH, Wang XT, Tang XM, Zhang ZF, Tian ZX, Brown PJ, Cai CM, Nelson RL, Ma JX (2017) Elevation of soybean seed oil content through selection for seed coat shininess. Nature Plants 4(1):30

    Article  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33(4):408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by National Natural Science Foundation of China (31871652 and 31471522), Modern Agricultural Industry Technology System in Hebei, China (HBCT2018090203), and Natural Science Foundation of Hebei Province (C2015301012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Yang, Qijian Song or Mengchen Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Di, R., Wu, C. et al. Haplotype analysis of a major and stable QTL underlying soybean (Glycine max) seed oil content reveals footprint of artificial selection. Mol Breeding 39, 57 (2019). https://doi.org/10.1007/s11032-019-0951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-0951-1

Keywords

Navigation