Log in

Novel fluoroquinolones analogues bearing 4-(arylcarbamoyl)benzyl: design, synthesis, and antibacterial evaluation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Bacterial resistance to fluoroquinolone has been increasing at an alarming rate worldwide. In an attempt to find more potent anti-bacterial agents, an efficient, straightforward protocol was performed to obtain a large substrate scope of novel ciprofloxacin and sarafloxacin analogues conjugated with 4-(arylcarbamoyl)benzyl 7a–ab. All prepared compounds were evaluated for their anti-bacterial activities against three gram-positive strains (Methicillin resistant staphylococcus aureus (MRSA), Staphylococcus aureus, and Enterococcus faecalis) as well as three gram-negative strains (Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli) through three standard methods including broth microdilution, agar-disc diffusion, and agar-well diffusion assays. Most of the compounds exhibited great to excellent anti-bacterial potencies against MRSA and S. aureus. Among the targeted compounds, derivative 7n exhibited great antibacterial potency, which was noticeably more potent than parent ciprofloxacin. Subsequently, a molecular docking study was performed for this compound to find out its probable binding mode with the active site of S. aureus DNA gyrase (PDB ID: 2XCT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the finding of this study are available within the manuscript.

References

  1. Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. Jama 281:61–66. https://doi.org/10.1001/jama.281.1.61

    Article  CAS  PubMed  Google Scholar 

  2. Chambers HF (2005) Community-associated MRSA—resistance and virulence converge. N Engl Med 352:1485–1487. https://doi.org/10.1056/nejme058023

    Article  CAS  Google Scholar 

  3. Song R, Wang Y, Wang M, Gao R, Yang T, Yang S, Yang C-G, ** Y, Zou S, Cai J (2020) Design and synthesis of novel desfluoroquinolone-aminopyrimidine hybrids as potent anti-MRSA agents with low hERG activity. Bioorg Chem 103:104176. https://doi.org/10.1016/j.bioorg.2020.104176

    Article  CAS  PubMed  Google Scholar 

  4. Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674. https://doi.org/10.1016/j.annemergmed.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  5. Moran GJ, Amii RN, Abrahamian FM, Talan DA (2005) Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg Infect Dis 11:928. https://doi.org/10.3201/eid1106.040641

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilson P, Andrews J, Charlesworth R, Walesby R, Singer M, Farrell D, Robbins M (2003) Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 51:186–188. https://doi.org/10.1093/jac/dkg104

    Article  CAS  PubMed  Google Scholar 

  7. Frazee BW, Lynn J, Charlebois ED, Lambert L, Lowery D, Perdreau-Remington F (2005) High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann Emerg Med 45:311–320. https://doi.org/10.1016/j.annemergmed.2004.10.011

    Article  PubMed  Google Scholar 

  8. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, Harriman K, Harrison LH, Lynfield R, Farley MM (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444. https://doi.org/10.1097/01.aog.0000170861.29348.64

    Article  CAS  PubMed  Google Scholar 

  9. Hooper DC (1998) Clinical applications of quinolones. Biochim Biophys Acta BBA 1400:45–61. https://doi.org/10.1016/S0167-4781(98)00127-4

    Article  CAS  PubMed  Google Scholar 

  10. Owens RC Jr, Ambrose PG (2000) Clinical use of the fluoroquinolones. Med Clin N Am 84:1447–1469. https://doi.org/10.1016/S0025-7125(05)70297-2

    Article  CAS  PubMed  Google Scholar 

  11. Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X (2009) Quinolones: action and resistance updated. Curr Top Med Chem 9:981–998. https://doi.org/10.2174/156802609789630947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574. https://doi.org/10.1021/bi5000564

    Article  CAS  PubMed  Google Scholar 

  13. Dougherty TJ, Beaulieu D, Barrett JF (2001) New quinolones and the impact on resistance. Drug Discov Today 6:529–536. https://doi.org/10.1016/s1359-6446(01)01760-3

    Article  CAS  PubMed  Google Scholar 

  14. Timsit Y (2011) Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 39:8665–8676. https://doi.org/10.1093/nar/gkr556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang G-F, Zhang S, Pan B, Liu X, Feng L-S (2018) 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 143:710–723. https://doi.org/10.1016/j.ejmech.2017.11.082

    Article  CAS  PubMed  Google Scholar 

  16. Domagala JM (1994) Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706. https://doi.org/10.1093/jac/33.4.685

    Article  CAS  PubMed  Google Scholar 

  17. Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini Rev Med Chem 6:375–386. https://doi.org/10.2174/138955706776361493

    Article  CAS  PubMed  Google Scholar 

  18. Redgrave LS, Sutton SB, Webber MA, Piddock LJ (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445. https://doi.org/10.1016/j.tim.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Peterson LR (2001) Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis 33:S180–S186. https://doi.org/10.1086/321846

    Article  CAS  PubMed  Google Scholar 

  20. Letafat B, Emami S, Mohammadhosseini N, Faramarzi MA, Samadi N, Shafiee A, Foroumadi A (2007) Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl) ethyl] piperazinyl quinolones. Chem Pharm Bull 55:894–898. https://doi.org/10.1002/chin.200748152

    Article  CAS  Google Scholar 

  21. Emami S, Foroumadi A, Faramarzi MA, Samadi N (2008) Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm 341:42–48. https://doi.org/10.1002/ardp.200700090

    Article  CAS  Google Scholar 

  22. Kumar R, Kumar A, Jain S, Kaushik D (2011) Synthesis, antibacterial evaluation and QSAR studies of 7-[4-(5-aryl-1, 3, 4-oxadiazole-2-yl) piperazinyl] quinolone derivatives. Eur J Med Chem 46:3543–3550. https://doi.org/10.1016/j.ejmech.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  23. Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A (2013) Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 68:185–191. https://doi.org/10.1016/j.ejmech.2013.07.032

    Article  CAS  PubMed  Google Scholar 

  24. Sharma PC, Jain A, Yar MS, Pahwa R, Singh J, Goel S (2015) Synthesis and antibacterial evaluation of novel analogs of fluoroquinolones annulated with 6-substituted-2-aminobenzothiazoles. Arab J Chem 8:671–677. https://doi.org/10.1016/j.arabjc.2011.04.008

    Article  CAS  Google Scholar 

  25. Dileep K, Polepalli S, Jain N, Buddana SK, Prakasham R, Murty M (2018) Synthesis of novel tetrazole containing hybrid ciprofloxacin and pipemidic acid analogues and preliminary biological evaluation of their antibacterial and antiproliferative activity. Mol Diversity 22:83–93. https://doi.org/10.1007/s11030-017-9795-y

    Article  CAS  Google Scholar 

  26. Soleimani E, Torkaman S, Sepahvand H, Ghorbani S (2019) Ciprofloxacin-functionalized magnetic silica nanoparticles: as a reusable catalyst for the synthesis of 1 H-chromeno [2, 3-d] pyrimidine-5-carboxamides and imidazo [1, 2-a] pyridines. Mol Diversity 23:739–749. https://doi.org/10.1007/s11030-018-9907-3

    Article  CAS  Google Scholar 

  27. Seliem IA, Panda SS, Girgis AS, Nagy YI, George RF, Fayad W, Fawzy NG, Ibrahim TS, Al-Mahmoudy AM, Sakhuja R (2020) Design, synthesis, antimicrobial, and DNA gyrase inhibitory properties of fluoroquinolone–dichloroacetic acid hybrids. Chem Biol Drug Design 95:248–259. https://doi.org/10.1111/cbdd.13638

    Article  CAS  Google Scholar 

  28. Yang P, Luo J-B, Wang Z-Z, Zhang L-L, **e X-B, Shi Q-S, Zhang X-G (2022) Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives. J Mol Struct 1262:133007. https://doi.org/10.1016/j.molstruc.2022.133007

    Article  CAS  Google Scholar 

  29. Tan Y-M, Li D, Li F-F, Ansari MF, Fang B, Zhou C-H (2022) Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg Med Chem Lett 73:128885. https://doi.org/10.1016/j.bmcl.2022.128885

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim NM, Fahim SH, Hassan M, Farag AE, Georgey HH (2022) Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: potency and side effects. Eur J Med Chem 228:114021. https://doi.org/10.1016/j.ejmech.2021.114021

    Article  CAS  PubMed  Google Scholar 

  31. Kumar N, Khanna A, Kaur K, Kaur H, Sharma A, Bedi PMS (2022) Quinoline derivatives volunteering against antimicrobial resistance: rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol Diversity. https://doi.org/10.1007/s11030-022-10537-y

    Article  Google Scholar 

  32. Mohammed HH, Ali DME, Badr M, Habib AG, Mahmoud AM, Farhan SM, Gany SSHAE, Mohamad SA, Hayallah AM, Abbas SH (2022) Synthesis and molecular docking of new N 4-piperazinyl ciprofloxacin hybrids as antimicrobial DNA gyrase inhibitors. Mol Diversity. https://doi.org/10.1007/s11030-022-10528-z

    Article  Google Scholar 

  33. Allaka TR, Kummari B, Polkam N, Kuntala N, Chepuri K, Anireddy JS (2022) Novel heterocyclic 1, 3, 4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: synthesis and computational molecular modeling. Mol Diversity 26:1581–1596. https://doi.org/10.1007/s11030-021-10287-3

    Article  CAS  Google Scholar 

  34. Aziz HA, El-Saghier AM, Badr M, Abuo-Rahma GE-DA, Shoman ME (2022) Thiazolidine-2, 4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities. Mol Diversity 26:1743–1759. https://doi.org/10.1007/s11030-021-10302-7

    Article  CAS  Google Scholar 

  35. Abdel-Aziz SA, Cirnski K, Herrmann J, Abdel-Aal MA, Youssif BG, Salem OI (2023) Novel fluoroquinolone hybrids as dual DNA gyrase and urease inhibitors with potential antibacterial activity: design, synthesis, and biological evaluation. J Mol Struct 1271:134049. https://doi.org/10.1016/j.molstruc.2022.134049

    Article  CAS  Google Scholar 

  36. Cardoso-Ortiz J, Leyva-Ramos S, Baines KM, Gómez-Durán CFA, Hernández-López H, Palacios-Can FJ, Valcarcel-Gamiño JA, Leyva-Peralta MA, Razo-Hernández RS (2023) Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: targeting S. aureus topoisomerase and SARS-CoV-2-MPro. J Mol Struct 1274:134507. https://doi.org/10.1016/j.molstruc.2022.134507

    Article  CAS  PubMed  Google Scholar 

  37. Marc G, Araniciu C, Oniga SD, Vlase L, Pîrnău A, Nadăș GC, Novac CȘ, Matei IA, Chifiriuc MC, Măruțescu L (2019) Design, synthesis and biological evaluation of new piperazin-4-yl-(acetyl-thiazolidine-2, 4-dione) norfloxacin analogues as antimicrobial agents. Molecules 24:3959. https://doi.org/10.3390/molecules24213959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM (2014) Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem 289:12300–12312. https://doi.org/10.1074/jbc.M113.529164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akahane K, Sekiguchi M, Une T, Osada Y (1989) Structure-epileptogenicity relationship of quinolones with special reference to their interaction with gamma-aminobutyric acid receptor sites. Antimicrob Agents Chemother 33:1704–1708. https://doi.org/10.1128/aac.33.10.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goswami M, Mangoli S, Jawali N (2014) Importance of chemical modification at C-7 position of quinolones for glutathione-mediated reversal of antibacterial activity. Int J Antimicrob Agents 43:387–388

    Article  CAS  PubMed  Google Scholar 

  41. Jazayeri S, Moshafi MH, Firoozpour L, Emami S, Rajabalian S, Haddad M, Pahlavanzadeh F, Esnaashari M, Shafiee A, Foroumadi A (2009) Synthesis and antibacterial activity of nitroaryl thiadiazole–gatifloxacin hybrids. Eur J Med Chem 44:1205–1209. https://doi.org/10.1016/j.ejmech.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  42. Norouzbahari M, Salarinejad S, Güran M, Şanlıtürk G, Emamgholipour Z, Bijanzadeh HR, Toolabi M, Foroumadi A (2020) Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety. DARU J Pharm Sci 28:661–672. https://doi.org/10.1007/s40199-020-00373-6

    Article  CAS  Google Scholar 

  43. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  44. Okada Y, Tsuda Y, Tada M, Wanaka K, Okamoto U, Hijikata-Okunomiya A, Okamoto S (2000) Development of potent and selective plasmin and plasma kallikrein inhibitors and studies on the structure-activity relationship. Chem Pharm Bull 48:1964–1972. https://doi.org/10.1248/cpb.48.1964

    Article  CAS  Google Scholar 

  45. Liu Y-F, Wang C-L, Bai Y-J, Han N, Jiao J-P, Qi X-L (2008) A facile total synthesis of imatinib base and its analogues. Org Process Res Dev 12:490–495. https://doi.org/10.1021/op700270n

    Article  CAS  Google Scholar 

  46. Khan SA, Saleem K, Khan Z (2008) Synthesis, structure elucidation and antibacterial evaluation of new steroidal-5-en-7-thiazoloquinoxaline derivatives. Eur J Med Chem 43:2257–2261. https://doi.org/10.1016/j.ejmech.2007.09.022

    Article  CAS  PubMed  Google Scholar 

  47. Temiz-Arpaci O, Zeyrek CT, Arisoy M, Erol M, Celik I, Kaynak-Onurdag F (2021) Synthesis, quantum mechanical calculations, antimicrobial activities and molecular docking studies of five novel 2, 5-disubstituted benzoxazole derivatives. J Mol Struct 1245:131084. https://doi.org/10.1016/j.molstruc.2021.131084

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported and funded by Tehran University of Medical Sciences (TUMS); Grant Nos. 9211266096 and 9123120022.

Author information

Authors and Affiliations

Authors

Contributions

Prof. AF designed the study and conducted the experiments. Dr. FP, TS, and MN synthesized the targeted compounds. Dr. FP, Dr. MGD, and Dr. HRB wrote the manuscript and analyzed the characterization data. Dr. LF and Dr. ZE carried out the docking studies. Dr. MN, Dr. MG, and GŞ performed the biological evaluations. Dr. MBT revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maryam Norouzbahari or Alireza Foroumadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study did not involve human subjects and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7301 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peytam, F., Norouzbahari, M., Saadattalab, T. et al. Novel fluoroquinolones analogues bearing 4-(arylcarbamoyl)benzyl: design, synthesis, and antibacterial evaluation. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10676-w

Keywords

Navigation