Log in

Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Spirocyclic compounds fascinate the synthetic chemists due to their privileged ring system and efficacy in drug discovery. Many natural compounds comprise spirocyclic moiety in their skeleton and are effective in pharmaceutical industry. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. In this review, recent synthetic approaches to accessing various spirocompounds comprising six-membered carbocycles/heterocycles have been summarized.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78
Scheme 79
Scheme 80
Scheme 81
Scheme 82
Scheme 83
Scheme 84
Scheme 85
Scheme 86
Scheme 87
Scheme 88
Scheme 89
Scheme 90

Similar content being viewed by others

References

  1. Moss GP (1999) Extension and revision of the nomenclature for spiro compounds. Pure Appl Chem 71:531–558. https://doi.org/10.1351/pac199971030531

    Article  CAS  Google Scholar 

  2. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK (2016) Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moieties. Synth Commun 46:1643–1664. https://doi.org/10.1080/00397911.2016.1211704

    Article  CAS  Google Scholar 

  3. Khanna P, Panda SS, Khanna L, Jain SC (2014) Aqua mediated synthesis of spirocyclic compounds. Min Rev Org Chem 11:73–86. https://doi.org/10.2174/1570193X1101140402101831

    Article  CAS  Google Scholar 

  4. Chin YW, Salim AA, Su BN, Mi Q, Chai HB, Riswan S, Kardono LB, Ruskandi A, Farnsworth NR, Swanson SM, Kinghorn AD (2008) Potential anticancer activity of naturally occurring and semisynthetic derivatives of aculeatins A and B from Amomum aculeatum. J Nat Prod 71:390–395. https://doi.org/10.1021/np070584j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Litvinov YM, Mortikov VY, Shestopalov AM (2008) Versatile three-component procedure for combinatorial synthesis of 2-aminospiro [(3′H)-indol-3′,4-(4H)-pyrans]. J Comb Chem 10:741–745. https://doi.org/10.1021/cc800093q

    Article  CAS  PubMed  Google Scholar 

  6. Jursic BS, Stevens ED (2004) Preparation of nitrogen heterocycles of spiro [furo [2, 3-d]-pyrimidine] pyrimidine derivatives. Synth Commun 34:3915–3923. https://doi.org/10.1081/SCC-200034786

    Article  CAS  Google Scholar 

  7. Jadidi K, Ghahremanzadeh R, Bazgir A (2009) Efficient synthesis of spiro [chromeno [2, 3-d] pyrimidine-5, 3′-indoline]-tetraones by a one-pot and three-component reaction. J Comb Chem 11:341–344. https://doi.org/10.1021/cc800167h

    Article  CAS  PubMed  Google Scholar 

  8. Gozalishvili LL, Beryozkina TV, Omelchenko IV, Zubatyuk RI, Shishkin OV, Kolos NN (2008) A rapid and facile synthesis of new spiropyrimidines from 5-(2-arylethylidene-2-oxo)-1, 3-dimethylpyrimidine-2, 4, 6-triones. Tetrahedron 64:8759–8765. https://doi.org/10.1016/j.tet.2008.06.097

    Article  CAS  Google Scholar 

  9. Tinker AC, Beaton HG, Boughton-Smith N, Cook TR, Cooper SL, Fraser-Rae L, Hallam K, Hamley P, McInally T, Nicholls DJ, Pimm AD (2003) 1, 2-dihydro-4-quinazolinamines: potent, highly selective inhibitors of inducible nitric oxide synthase which show antiinflammatory activity in vivo. J Med Chem 46:913–916. https://doi.org/10.1021/jm0255926

    Article  CAS  PubMed  Google Scholar 

  10. Laude EA, Bee D, Crambes O, Howard P (1995) Antitussive and antibronchoconstriction actions of fenspiride in guinea-pigs. Eur Respir J 8:1699–1704. https://doi.org/10.1183/09031936.95.08101699

    Article  CAS  PubMed  Google Scholar 

  11. Chande MS, Verma RS, Barve PA, Khanwelkar RR, Vaidya RB, Ajaikumar KB (2005) Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: a Michael addition approach. Eur J Med Chem 40:1143–1148. https://doi.org/10.1016/j.ejmech.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  12. Behera RK, Behera AK, Pradhan R, Pati A, Patra M (2006) Studies on spiroheterocycles, part II: heterocyclization of the spiro compounds containing cyclohexanone and thiobarbituric acid with different bidentate nucleophilic reagents. Synth Commun 36:3729–3742. https://doi.org/10.1080/00397910600946231

    Article  CAS  Google Scholar 

  13. Youssef MM, Amin MA (2010) Microwave assisted synthesis of some new heterocyclic spiro-derivatives with potential antimicrobial and antioxidant activity. Molecules 15:8827–8840. https://doi.org/10.3390/molecules15128827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oguma T, Katsuki T (2014) Iron-catalyzed asymmetric tandem spiro-cyclization using dioxygen in air as the hydrogen acceptor. Chem Commun 50:5053–5056. https://doi.org/10.1039/c4cc01555j

    Article  CAS  Google Scholar 

  15. Huang XF, Zhang YF, Qi ZH, Li NK, Geng ZC, Li K, Wang XW (2014) Organocatalytic enantioselective construction of multi-functionalized spiro oxindole dienes. Org Biomol Chem 12:4372–4385. https://doi.org/10.1039/c4ob00545g

    Article  CAS  PubMed  Google Scholar 

  16. Hu FL, Wei Y, Shi M (2014) Phosphine-catalyzed asymmetric formal [4 + 2] tandem cyclization of activated dienes with isatylidenemalononitriles; enantioselective synthesis of multistereogenic spirocyclic oxindoles. Adv Synth Catal 35(6):736–742. https://doi.org/10.1002/adsc.201301070

    Article  CAS  Google Scholar 

  17. Li TZ, **e J, Jiang Y, Sha F, Wu XY (2015) Enantioselective vinylogous Michael/cyclization cascade reaction of acyclic β, γ-unsaturated amides with isatylidene malononitriles: asymmetric construction of spirocyclic oxindoles. Adv Synth Catal 357:3507–3511. https://doi.org/10.1002/adsc.201500469

    Article  CAS  Google Scholar 

  18. Li Y, Su X, Zhou W, Li W, Zhang J (2015) Amino acid derived phosphine-catalyzed enantioselective 1, 4-dipolar spiroannulation of cyclobutenones and isatylidenemalononitrile. Chem Eur J 21:4224–4228. https://doi.org/10.1002/chem.201406475

    Article  CAS  PubMed  Google Scholar 

  19. Zhan SC, Sun J, Liu RZ, Yan CG (2020) Diastereoselective construction of carbazole-based spirooxindoles via the Levy three-component reaction. Org Biomol Chem 18:163–168. https://doi.org/10.1039/C9OB02013F

    Article  CAS  Google Scholar 

  20. Huang H, Bihani M, Zhao JCG (2016) Stereoselective synthesis of spirooxindole derivatives using an organocatalyzed tandem Michael-Michael reaction. Org Biomol Chem 14:1755–1763. https://doi.org/10.1039/C5OB02348C

    Article  CAS  PubMed  Google Scholar 

  21. Wu H, Wang YM (2014) One-Pot organocatalytic enantioselective Michael/Povarov Domino strategy for the construction of spirooctahydroacridine-3,3′-oxindole scaffolds. Chem Eur J 20:5899–5904. https://doi.org/10.1002/chem.201402002

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan P, Mahajan S, Loh CC, Raabe G, Enders D (2014) Streocontrolled construction of six vicinal stereogenic centers on spiropyrazolones via organocascade Michael/Michael/1, 2-addition reactions. Org Lett 16:2954–2957. https://doi.org/10.1021/ol501093v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng XM, Meng CY, Bao JX, Xu DC, **e JW, Zhu WD (2015) Enantioselective construction of polyfunctionalized spiroannulated dihydrothiophenes via a formal thio [3 + 2] cyclization. J Org Chem 80:11521–11528. https://doi.org/10.1021/acs.joc.5b01357

    Article  CAS  PubMed  Google Scholar 

  24. Saikia UP, Baruah D, Pahari P, Borah MJ, Goswami A, Konwar D (2014) A facile microwave assisted synthesis of spiro-1, 3-oxazines from n-(2-(cyclohex-1-en-1-yl) ethyl) amides. Tetrahedron Lett 55:4328–4330. https://doi.org/10.1016/j.tetlet.2014.06.042

    Article  CAS  Google Scholar 

  25. **e YJ, Sun J, Yan CG (2014) Domino reactions of vinyl malononitriles with 3-phenacylideneoxindoles for efficient synthesis of functionalized spirocyclic oxindoles. ACS Comb Sci 16:271–280. https://doi.org/10.1021/co500006c

    Article  CAS  PubMed  Google Scholar 

  26. Chen PQ, **ao YC, Yue CZ, Chen YC (2014) Trienamine catalysis with linear deconjugated 3, 5-dienones. Org Chem Front 1:490–493. https://doi.org/10.1039/C4QO00079J

    Article  CAS  Google Scholar 

  27. Tu XC, Yu Y, Tu MS, Jiang B, Li C, Tu SJ (2014) A new iodonium ylide-based three-component reaction leading to 2-spirosubstituted dihydrofurans under microwave irradiation. J Heterocycl Chem 51:436–441. https://doi.org/10.1002/jhet.1732

    Article  CAS  Google Scholar 

  28. Batmani H, Noroozi Pesyan N, Havasi F, Aalinejad M (2019) Synthesis of spiro-dihydrofuran in the presence of a novel and reusable nanocatalyst Cu (II)-glycerol/MCM-41. Appl Organomet Chem 33:4997. https://doi.org/10.1002/aoc.4997

    Article  CAS  Google Scholar 

  29. Stiller J, Poulsen PH, Cruz DC, Dourado J, Davis RL, Jørgensen KA (2014) Organocatalytic [4 + 2] addition reactions via tetraenamine intermediate. Chem Sci 5:2052–2056. https://doi.org/10.1039/C4SC00081A

    Article  CAS  Google Scholar 

  30. Manoni F, Connon SJ (2014) Catalytic asymmetric tamura cycloadditions. Angew Chem Int Ed 53:2628–2632. https://doi.org/10.1002/anie.201309297

    Article  CAS  Google Scholar 

  31. Huang LJ, Weng J, Wang S, Lu G (2015) Organocatalytic diels-alder reaction of 2-vinylindoles with methyleneindolinones: an efficient approach to functionalized carbazolespirooxindoles. Adv Synth Catal 357:993–1003. https://doi.org/10.1002/adsc.201400780

    Article  CAS  Google Scholar 

  32. **e Y, Que Y, Li T, Zhu L, Yu C, Yao C (2015) N-heterocyclic carbene-catalyzed [4 + 2] cyclization of 2-bromo-2-enal with 3-alkylenyloxindoles: efficient assembly of spirocarbocyclic oxindole. Org Biomol Chem 13:1829–1835. https://doi.org/10.1039/C4OB01706D

    Article  CAS  PubMed  Google Scholar 

  33. Wang B, Leng HJ, Yang XY, Han B, Rao CL, Liu L, Peng C, Huang W (2015) Efficient synthesis of tetrahydronaphthalene or isochroman-fused spirooxindoles using tandem reactions. RSC Adv 5:88272–88276. https://doi.org/10.1039/C5RA15735H

    Article  CAS  Google Scholar 

  34. Li ZL, Liu C, Tan R, Tong ZP, Liu YK (2016) Organocatalytic, asymmetric [2 + 2+2] annulation to construct six-membered spirocyclic oxindoles with six continuous stereogenic centers. Catalysts 6:65. https://doi.org/10.3390/catal6050065

    Article  CAS  Google Scholar 

  35. Anwar S, Li SM, Chen K (2014) Organocatalytic synthesis of substituted spirocyclohexane carbaldehydes via [4 + 2] annulation strategy between 2-arylideneindane-1, 3-diones and glutaraldehyde. Org Lett 16:2993–2995. https://doi.org/10.1021/ol501160k

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Lin MH, Han Y, Wang F, Cheng JP (2013) Asymmetric diels-alder reaction of 3-olefinic benzofuran-2-ones and polyenals: construction of chiral spirocyclic benzofuran-2-ones. Org Lett 16:114–117. https://doi.org/10.1021/ol403094a

    Article  CAS  PubMed  Google Scholar 

  37. Monleón A, Glaus F, Vergura S, Jørgensen KA (2016) Organocatalytic strategy for the enantioselective cycloaddition to trisubstituted nitroolefins to create spirocyclohexene-oxetane scaffolds. Angew Chem Int Edit 55:2478–2482. https://doi.org/10.1002/anie.201510731

    Article  CAS  Google Scholar 

  38. Zhang DY, Xu L, Wu H, Gong LZ (2015) Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chem-Eur J 21:10314–10317. https://doi.org/10.1002/chem.201501583

    Article  CAS  PubMed  Google Scholar 

  39. Yang W, Zhang Y, Qiu S, Zhao C, Zhang L, Liu H, Zhou L, **ao Y, Guo H (2015) Phosphine-catalyzed [4 + 2] cycloaddition of unsaturated pyrazolones with allenoates: a concise approach toward spiropyrazolones. RSC Adv 5:62343–62347. https://doi.org/10.1039/C5RA11595G

    Article  CAS  Google Scholar 

  40. Meninno S, Mazzanti A, Lattanzi A (2019) Asymmetric synthesis of pyrazolone fused spirocyclohexeneimines via a vinylogous Michael/cyclization cascade reaction. Adv Synth Catal 361:79–84. https://doi.org/10.1002/adsc.201801337

    Article  CAS  Google Scholar 

  41. Abbaraju S, Ramireddy N, Rana NK, Arman H, Zhao JCG (2015) Organocatalytic enantioselective synthesis of polysubstituted spirooxindoles using a tandem Michael-Michael reaction. Adv Synth Catal 357:2633–2638. https://doi.org/10.1002/adsc.201500298

    Article  CAS  Google Scholar 

  42. Fei J, Qian Q, Sun X, Gu X, Zou C, Ye J (2015) Organocatalytic enantioselective formal [4 + 2] cycloaddition of enones with cyclic N-sulfonylimines and methylene chromene for chiral spirocyclic compounds. Org Lett 17:5296–5299. https://doi.org/10.1021/acs.orglett.5b02667

    Article  CAS  PubMed  Google Scholar 

  43. Gajulapalli VPR, Vinayagam P, Kesavan V (2015) Enantioselective assembly of functionalized carbocyclic spirooxindoles using an l-proline derived thiourea organocatalyst. RSC Adv 5:7370–7379. https://doi.org/10.1039/C4RA13711F

    Article  CAS  Google Scholar 

  44. Han B, Huang W, Ren W, He G, Wang JH, Peng C (2015) Asymmetric synthesis of cyclohexane-fused drug-like spirocyclic scaffolds containing six contiguous stereogenic centers via organocatalytic cascade reactions. Adv Synth Catal 357:561–568. https://doi.org/10.1002/adsc.201400764

    Article  CAS  Google Scholar 

  45. Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT (2016) Enantioselective synthesis of spirocyclohexadienones by NHC-catalyzed formal [3 + 3] annulation reaction of enals. Angew Chem Int Ed 55:268–272. https://doi.org/10.1002/anie.201507802

    Article  CAS  Google Scholar 

  46. Xu J, Hu L, Hu H, Ge S, Liu X, Feng X (2019) Enantioselective vinylogous Michael-aldol reaction to synthesize spirocyclohexene pyrazolones in aqueous media. Org Lett 21:1632–1636. https://doi.org/10.1021/acs.orglett.9b00168

    Article  CAS  PubMed  Google Scholar 

  47. Amireddy M, Chen K (2016) Organocatalytic one-pot asymmetric synthesis of functionalized spiropyrazolones via a Michael-aldol sequential reaction. RSC Adv 6:77474–77480. https://doi.org/10.1039/C6RA13923J

    Article  CAS  Google Scholar 

  48. Yuan Z, Wei W, Lin A, Yao H (2016) Bifunctional organo/metal cooperatively catalyzed [3 + 2] annulation of para-quinone methides with vinylcyclopropanes: approach to spiro [4.5] deca-6, 9-diene-8-ones. Org Lett 18:3370–3373. https://doi.org/10.1021/acs.orglett.6b01512

    Article  CAS  PubMed  Google Scholar 

  49. Rani MA, Kumar SV, Roja SS, Almansour AI, Kumar RS, Athimoolam S, Kumar RR (2016) Synthesis of highly functionalized 2-thiaspiro [4.5] deca-6, 8-dienes via atom efficient tandem Michael addition/Thorpe-Ziegler cyclization. RSC Adv 6:40585–40592. https://doi.org/10.1039/C6RA05572A

    Article  CAS  Google Scholar 

  50. Ren W, Wang XY, Li JJ, Tian M, Liu J, Ouyang L, Wang JH (2017) Efficient construction of biologically important functionalized polycyclic spiro-fused carbocyclicoxindoles via an asymmetric organocatalytic quadruple-cascade reaction. RSC Adv 7:1863–1868. https://doi.org/10.1039/C6RA24910H

    Article  CAS  Google Scholar 

  51. Beltran F, Andna L, Miesch L (2019) Spirocyclization of keto-ynesulfonamides promoted by quaternary ammonium salts. Org Chem Front 6:373–376. https://doi.org/10.1039/C8QO00937F

    Article  CAS  Google Scholar 

  52. Fang W, Wei Y, Shi M (2019) Palladium (II)-catalyzed intermolecular cascade cyclization of methylenecyclopropanes with aromatic alkynes: construction of spirocyclic compounds containing indene and 1, 2-dihydronaphthalene moieties. Adv Synth Catal 361:3446–3450. https://doi.org/10.1002/adsc.201900327

    Article  CAS  Google Scholar 

  53. Wang CS, Roisnel T, Dixneuf PH, Soulé JF (2019) Access to 3-(2-oxoalkyl)-azaspiro [4.5] trienones via acid-triggered oxidative cascade reaction through alkenyl peroxide radical intermediate. Adv Synth Catal 361:445–450. https://doi.org/10.1002/adsc.201801203

    Article  CAS  Google Scholar 

  54. Guo S, Liu Y, Zhao L, Zhang X, Fan X (2019) Rhodium-catalyzed selective oxidative (spiro) annulation of 2-arylindoles by using benzoquinone as a C2 or C1 synthon. Org Lett 21:6437–6441. https://doi.org/10.1021/acs.orglett.9b02336

    Article  CAS  PubMed  Google Scholar 

  55. Han Y, ** Y, Jiang M, Yang H, Fu H (2019) Photocatalyst-free visible-light photoredox dearomatization of phenol derivatives containing ketoximes: an easy access to spiropyrrolines. Org Lett 21:1799–1803. https://doi.org/10.1021/acs.orglett.9b00372

    Article  CAS  PubMed  Google Scholar 

  56. Gao Y, Liu D, Fu Z, Huang W (2019) Facile synthesis of 2, 2-diacyl spirocyclohexanones via an N-heterocyclic carbene-catalyzed formal [3C + 3C] annulation. Org Lett 21:926–930. https://doi.org/10.1021/acs.orglett.8b03892

    Article  CAS  PubMed  Google Scholar 

  57. Ni J, Jiang Y, Qi Z, Yan R (2019) TFAA-catalyzed annulation synthesis of spiro pyrrolo [1, 2-a] quinoxaline derivatives from 1-(2-aminophenyl) pyrroles and benzoquinones/ketones. Chem Asian J 14:2898–2902. https://doi.org/10.1002/asia.201900567

    Article  CAS  PubMed  Google Scholar 

  58. Liu XL, Zuo X, Wang JX, Chang SQ, Wei QD, Zhou Y (2019) A bifunctional pyrazolone-chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org Chem Front 6:1485–1490. https://doi.org/10.1039/C9QO00265K

    Article  CAS  Google Scholar 

  59. Zhang M, Wang JX, Chang SQ, Liu XL, Zuo X, Zhou Y (2019) Highly efficient enantioselective synthesis of bispiro [benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2019.06.015

    Article  PubMed  Google Scholar 

  60. Sarkar D, Rout N (2019) Ruthenium (VIII)-catalyzed ipso-dearomative spiro-etherification and spiro-amidation of phenols. Org Lett 21:4132–4136. https://doi.org/10.1021/acs.orglett.9b01322

    Article  CAS  PubMed  Google Scholar 

  61. Hsu DS, Cheng CY (2019) Construction of spirofused tricyclic frameworks by NHC-catalyzed intramolecular Stetter reaction of a benzaldehyde tether with a cyclic enone. J Org Chem 84:10832–10842. https://doi.org/10.1021/acs.joc.9b01403

    Article  CAS  PubMed  Google Scholar 

  62. Elagamy A, Shaw R, Panwar R, Shally Ram VJ, Pratap R (2019) Synthesis of highly functionalized spirobutenolides via a nitroalkane-mediated ring contraction of 2-oxobenzo [h] chromenes through denitration. J Org Chem 84:154–1161. https://doi.org/10.1021/acs.joc.8b02257

    Article  CAS  Google Scholar 

  63. Zhou L, **a Y, Wang YZ, Fang JD, Liu XY (2019) Mn (III)-Promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron 75:1267–1274. https://doi.org/10.1016/j.tet.2019.01.041

    Article  CAS  Google Scholar 

  64. Karadeniz E, Zora M (2019) Synthesis of 1-azaspiro [4.5] deca-1, 3-dienes from N-propargylic β-enaminones in basic medium. Synthesis 51:2157–2170. https://doi.org/10.1055/s-0037-1611723

    Article  CAS  Google Scholar 

  65. Almansour A, Kumar R, Beevi F, Shirazi A, Osman H, Ismail R, Choon T, Sullivan B, McCaffrey K, Nahhas A, Parang K (2014) Facile, regio-and diastereoselective synthesis of spiro-pyrrolidine and pyrrolizine derivatives and evaluation of their antiproliferative activities. Molecules 19:10033–10055. https://doi.org/10.3390/molecules190710033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rambla M, Duroure L, Chabaud L, Guillou C (2014) Enantioselective synthesis of spiroimines by asymmetric decarboxylative alkylation/isomerization/[3 + 2]-cycloaddition reaction of azidoalkenes. Eur J Org Chem 2014:7716–7720. https://doi.org/10.1002/ejoc.201403161

    Article  CAS  Google Scholar 

  67. Goudedranche S, Bugaut X, Constantieux T, Bonne D, Rodriguez J (2014) α, β-Unsaturated acyl cyanides as new bis-electrophiles for enantioselective organocatalyzed formal [3 + 3] spiroannulation. Chem-Eur J 20:410–415. https://doi.org/10.1002/chem.201303613

    Article  CAS  PubMed  Google Scholar 

  68. Dai W, Lu H, Li X, Shi F, Tu SJ (2014) Diastereo-and enantioselective construction of a bispirooxindole scaffold containing a tetrahydro-β-carboline moiety through an organocatalytic asymmetric cascade reaction. Chem Eur J 20:11382–11389. https://doi.org/10.1002/chem.201402485

    Article  CAS  PubMed  Google Scholar 

  69. Bhuyan D, Sarmah MM, Dommaraju Y, Prajapati D (2014) Microwave-promoted efficient synthesis of spiroindenotetrahydropyridine derivatives via a catalyst-and solvent-free pseudo one-pot five-component tandem Knoevenagel/aza-diels-alder reaction. Tetrahedron Lett 55:5133–5136. https://doi.org/10.1016/j.tetlet.2014.07.086

    Article  CAS  Google Scholar 

  70. Tejedor D, Cotos L, Méndez-Abt G, García-Tellado F (2014) General synthesis of substituted 1, 2-dihydropyridines. J Org Chem 79:10655–10661. https://doi.org/10.1021/jo501991s

    Article  CAS  PubMed  Google Scholar 

  71. Faty R, Rashed M, Youssef M (2015) Microwave-assisted synthesis and antimicrobial evaluation of novel spiroisoquinoline and spiropyrido [4, 3-d] pyrimidine derivatives. Molecules 20:1842–1859. https://doi.org/10.3390/molecules20021842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng H, Liu X, Xu C, **a Y, Lin L, Feng X (2015) Regio-and enantioselective aza-Diels–Alder reactions of 3-vinylindoles: a concise synthesis of the antimalarial spiroindolone NITD609. Angew Chem Int Edit 54:10958–10962. https://doi.org/10.1002/anie.201505717

    Article  CAS  Google Scholar 

  73. Alizadeh A, Moafi L (2015) An efficient synthesis of spiro-oxindole derivatives by three-component reactions in water. Helv Chim Acta 98:546–551. https://doi.org/10.1002/hlca.201400263

    Article  CAS  Google Scholar 

  74. Poomathi N, Mayakrishnan S, Muralidharan D, Srinivasan R, Perumal PT (2015) Reaction of isatins with 6-amino uracils and isoxazoles: isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water. Green Chem 17:3362–3372. https://doi.org/10.1039/C5GC00006H

    Article  CAS  Google Scholar 

  75. Rahimi F, Bayat M, Hosseini H (2019) Synthesis of spiroimidazopyridineoxindole, spiropyridopyrimidineoxindole and spiropyridodiazepineoxindole derivatives based on heterocyclic ketene aminals via a four-component reaction. RSC Adv 9:16384–16389. https://doi.org/10.1039/C8RA10379H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. **e D, Yang L, Lin Y, Zhang Z, Chen D, Zeng X, Zhong G (2015) Rapid access to spirocylic oxindoles: application of asymmetric n-heterocyclic carbene-catalyzed [3 + 3] cycloaddition of imines to oxindole-derived enals. Org Lett 17:2318–2321. https://doi.org/10.1021/acs.orglett.5b00726

    Article  CAS  PubMed  Google Scholar 

  77. You Y, Cui BD, Zhou MQ, Zuo J, Zhao JQ, Xu XY, Zhang XM, Yuan WC (2015) Organocatalytic asymmetric Michael/Friedel-Crafts cascade reaction of 3-pyrrolyl-oxindoles and α, β-unsaturated aldehydes for the construction of chiral spiro [5, 6-dihydropyrido [1, 2-a] pyrrole-3, 3′-oxindoles]. J Org Chem 80:5951–5957. https://doi.org/10.1021/acs.joc.5b00597

    Article  CAS  PubMed  Google Scholar 

  78. Chidurala P, Jetti V, Meshram JS (2016) Facile synthesis of new 3, 5-dispiro substituted piperidine analogs via microwave-assisted one pot multicomponent reaction. J Heterocycl Chem 53:389–392. https://doi.org/10.1002/jhet.2424

    Article  CAS  Google Scholar 

  79. Patil A, Salunkhe R (2018) Metal free green protocol for the synthesis of bis-spiro piperidine and pyrimidine derivatives. Res Chem Intermediat 44:3337–3348. https://doi.org/10.1007/s11164-018-3310-7

    Article  CAS  Google Scholar 

  80. Safari E, Maryamabadi A, Hasaninejad B (2017) A highly efficient, one-pot synthesis of novel bis-spirooxindoles with skeletal diversity via sequential multi-component reaction in PEG-400 as a biodegradable solvent. RSC Adv 7:39502–39511. https://doi.org/10.1039/C7RA06017C

    Article  CAS  Google Scholar 

  81. Ghandi M, Ahangaran MM, Abbasi A (2017) Sequential one-pot five-component synthesis of tetrazole-based spirotetrahydro-β-carbolines. J Iran Chem Soc 14:1131–1137. https://doi.org/10.1007/s13738-017-1063-7

    Article  CAS  Google Scholar 

  82. Peneau A, Retailleau P, Guillou C, Chabaud L (2018) Rhodium (III)-catalyzed synthesis of spiropiperidine derivatives via C-H activation. J Org Chem 83:2324–2340. https://doi.org/10.1021/acs.joc.7b03252

    Article  CAS  PubMed  Google Scholar 

  83. He C, Li Z, Xu J, Ren H (2019) Asymmetric synthesis of spirocyclic oxindole δ-lactams via NHC-catalyzed formal [2 + 4] annulation of aliphatic aldehydes with oxindole-derived α, β-unsaturated ketimines. J Org Chem 84:12177–12186. https://doi.org/10.1021/acs.joc.9b01760

    Article  CAS  PubMed  Google Scholar 

  84. Martyloga OV, Myronenko A, Tkachenko AM, Matvienko VO, Kuchkovska YO, Grygorenko OO (2019) Multigram synthesis of functionalized spirocyclic diazirines. Eur J Org Chem 2019:3744–3750. https://doi.org/10.1002/ejoc.201900485

    Article  CAS  Google Scholar 

  85. Mirhosseini-Eshkevari B, Ghasemzadeh MA, Esnaashari M (2019) Highly efficient and green approach for the synthesis of spirooxindole derivatives in the presence of novel Brønsted acidic ionic liquids incorporated in UiO-66 nanocages. Appl Organomet Chem 33:5027. https://doi.org/10.1002/aoc.5027

    Article  CAS  Google Scholar 

  86. Wang Z, Niu J, Zeng H, Li CJ (2019) Construction of spirocyclic tetrahydro-β-carbolines via cross-annulation of phenols with tryptamines in water. Org Lett 21:7033–7037. https://doi.org/10.1021/acs.orglett.9b02613

    Article  CAS  PubMed  Google Scholar 

  87. Yuan H, Tang C, Su S, Cui L, Jia X, Li C, Li J (2019) A bicyclization reaction with two molecular allenyl ketones and isocyanides: synthesis of a lactone-containing azaspirocycle derivative. Chem Comm 55:7231–7234. https://doi.org/10.1039/C9CC02785H

    Article  CAS  PubMed  Google Scholar 

  88. Kong L, Huang R, He H, Fan Y, Lin J, Yan S (2020) Multi-component solvent-free cascade reaction of 2-cyanoacetamides: regioselective synthesis of pyridin-2-ones bearing quaternary centers. Green Chem. https://doi.org/10.1039/c9gc03692j

    Article  Google Scholar 

  89. **e X, Peng C, Leng HJ, Wang B, Tang ZW, Huang W (2014) Asymmetric synthesis of oxa-spirocyclic indanones with structural complexity via an organocatalytic Michael-Henry-acetalization cascade. Synlett 25:143–147. https://doi.org/10.1055/s-0033-1340077

    Article  CAS  Google Scholar 

  90. Gao TP, Lin JB, Hu XQ, Xu PF (2014) A catalytic asymmetric hetero-diels-alder reaction of olefinic azlactones and isatins: facile access to chiral spirooxindole dihydropyranones. Chem Commun 50:8934–8936. https://doi.org/10.1039/C4CC03896G

    Article  CAS  Google Scholar 

  91. **ao Z, Yu C, Li T, Wang XS, Yao C (2014) N-heterocyclic carbene/Lewis acid strategy for the stereoselective synthesis of spirocyclic oxindole-dihydropyranones. Org Lett 16:3632–3635. https://doi.org/10.1021/ol501224p

    Article  CAS  PubMed  Google Scholar 

  92. Cui HL, Chouthaiwale PV, Yin F, Tanaka F (2016) Catalytic asymmetric hetero-diels-alder reactions of enones with isatins to access functionalized spirooxindole tetrahydropyrans: scope, derivatization, and discovery of bioactives. Org Biomol Chem 14:1777–1783. https://doi.org/10.1039/C5OB02393A

    Article  CAS  PubMed  Google Scholar 

  93. Lin Y, Yang L, Deng Y, Zhong G (2015) Cooperative catalysis of N-heterocyclic carbene and Brønsted acid for a highly enantioselective route to unprotected spiro-indoline-pyrans. Chem Commun 51:8330–8333. https://doi.org/10.1039/C5CC02096D

    Article  CAS  Google Scholar 

  94. Parthasarathy K, Praveen C, Jeyaveeran JC, Prince AAM (2016) Gold catalyzed double condensation reaction: synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg Med Chem Lett 26:4310–4317. https://doi.org/10.1016/j.bmcl.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  95. Ghadiri S, Bayat M, Hosseini FS (2019) A simple and environmentally benign synthesis of novel spiro [indoline-3, 5′-pyrano [2, 3-d] pyrimidine] derivatives in water. Monatsh Chem 150:1079–1084. https://doi.org/10.1007/s00706-019-2356-6

    Article  CAS  Google Scholar 

  96. Zhao HW, Li B, Tian T, Meng W, Yang Z, Song XQ, Chen XQ, Pang HL (2015) Highly enantioselective synthesis of chiral pyranonaphthoquinone-fused spirooxindoles through organocatalytic three-component cascade reactions. Eur J Org Chem 2015:3320–3326. https://doi.org/10.1002/ejoc.201500152

    Article  CAS  Google Scholar 

  97. Mohamadpour F, Maghsoodlou MT, Heydari R, Lashkari M (2016) Copper (II) acetate monohydrate: an efficient and eco-friendly catalyst for the one-pot multi-component synthesis of biologically active spiropyrans and 1h-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives under solvent-free conditions. Res Chem Intermediat 42:7841–7853. https://doi.org/10.1007/s11164-016-2565-0

    Article  CAS  Google Scholar 

  98. Rezvanian A, Zadsirjan V, Saedi P, Heravi MM (2018) Iodine-catalyzed one-pot four-component synthesis of spiro [indoline-3, 4′-pyrano-pyrazole] derivatives. J Heterocycl Chem 55:2772–2780. https://doi.org/10.1002/jhet.3342

    Article  CAS  Google Scholar 

  99. Meshram G, Wagh P, Amratlal V, Deshpande S (2015) Efficient microwave-assisted one-pot synthesis of novel spironaphthopyrano-one derivatives. J Heterocycl Chem 52:1639–1645. https://doi.org/10.1002/jhet.2274

    Article  CAS  Google Scholar 

  100. Nasab NH, Safari J (2019) Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe2O4@SiO2@ melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst. J Mol Struct 1193:118–124. https://doi.org/10.1016/j.molstruc.2019.05.023

    Article  CAS  Google Scholar 

  101. Zhu L, Chen Q, Shen D, Zhang W, Shen C, Zeng X, Zhong G (2016) Enantioselective construction of spirocyclic oxindole derivatives with multiple stereocenters via an organocatalytic Michael/aldol/hemiacetalization cascade reaction. Org Lett 18:2387–2390. https://doi.org/10.1021/acs.orglett.6b00873

    Article  CAS  PubMed  Google Scholar 

  102. Heravi MM, Hashemi E, Azimian F (2015) N-sulfonic acid modified poly (styrene-co-maleic anhydride): an efficient and recyclable solid acid catalyst for the synthesis of a wide range of spiropyrans. J Iran Chem Soc 12:647–653. https://doi.org/10.1007/s13738-014-0523-6

    Article  CAS  Google Scholar 

  103. Ashok D, Gandhi DM, Kumar AV, Srinivas G, Reddy MS, Kanth SS, Vijjulatha M (2016) Microwave assisted synthesis, biological evaluation, and molecular docking of novel chroman scaffolds incorporating spirochromanone framework. Med Chem Res 25:2882–2899. https://doi.org/10.1007/s00044-016-1699-3

    Article  CAS  Google Scholar 

  104. Yazdani-Elah-Abadi A, Maghsoodlou MT, Mohebat R, Heydari R (2017) Theophylline as a new and green catalyst for the one-pot synthesis of spiro [benzo [a] pyrano [2, 3-c] phenazine] and benzo [α] pyrano [2, 3-c] phenazine derivatives under solvent-free conditions. Chin Chem Lett 28:446–452. https://doi.org/10.1016/j.cclet.2016.09.016

    Article  CAS  Google Scholar 

  105. Mohebat R, Simin N, Yazdani-Elah-Abadi AA (2019) Rapid and highly efficient microwave-promoted four-component domino reaction for the synthesis of novel spiro [benzo [a] chromeno [2, 3-c] phenazine] derivatives under solvent-free conditions. Polycycl Aromat Compd 39:148–158. https://doi.org/10.1080/10406638.2017.1293698

    Article  CAS  Google Scholar 

  106. Muthusamy S, Prakash M, Ramakrishnan C, Gromiha MM, Kesavan V (2016) Organocatalytic enantioselective assembly of spirooxindole-naphthopyrans through tandem Friedel-Crafts type/hemiketalization. ChemCatChem 8:1708–1712. https://doi.org/10.1002/cctc.201600087

    Article  CAS  Google Scholar 

  107. Yin SJ, Zhang SY, Zhang JQ, Sun BB, Fan WT, Wu B, Wang XW (2016) Organocatalytic tandem enantioselective Michael-cyclization of isatin-derived β, γ-unsaturated α-ketoesters with 3-hydroxy-4 h-chromen-4-one or 2-hydroxy-1, 4-naphthoquinone derivatives. RSC Adv 6:84248–84254. https://doi.org/10.1039/C6RA17400K

    Article  CAS  Google Scholar 

  108. Guranova NI, Darin D, Kantin G, Novikov AS, Bakulina O, Krasavin M (2019) Rh (II)-catalyzed spirocyclization of α-diazo homophthalimides with cyclic ethers. J Org Chem 84:4534–4542. https://doi.org/10.1021/acs.joc.9b00245

    Article  CAS  PubMed  Google Scholar 

  109. Afeke C, **e Y, Floreancig PE (2019) Re2O7-catalyzed approach to spirocyclic ether formation from acyclic precursors: observation of remote stereoinduction. Org Lett 21:5064–5067. https://doi.org/10.1021/acs.orglett.9b01660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shen YB, Li SS, Liu X, Yu L, Sun YM, Liu Q, **ao J (2019) Formal [4 + 2] annulation of oxindole-embedded ortho-quinone methides with 1, 3-dicarbonyls: synthesis of spiro [chromen-4, 3′-oxindole] scaffolds. J Org Chem 84:3990–3999. https://doi.org/10.1021/acs.joc.8b03260

    Article  CAS  PubMed  Google Scholar 

  111. Tamura R, Kitamura E, Tsutsumi R, Yamanaka M, Akiyama T, Mori K (2019) Diastereoselective synthesis of CF3-substituted spiroisochromans by [1, 5]-hydride shift/cyclization/intramolecular Friedel-Crafts reaction sequence. Org Lett 21:2383–2387. https://doi.org/10.1021/acs.orglett.9b00668

    Article  CAS  PubMed  Google Scholar 

  112. Yang W, Wang X, ** X, Sun H, Guo R, Xu W, Cai Q (2019) Copper-catalysed double O-arylation for enantioselective synthesis of oxa-spirocycles. Adv Synth Catal 361:562–568. https://doi.org/10.1002/adsc.201801395

    Article  CAS  Google Scholar 

  113. Liu J, Tian Y, Shi J, Zhang S, Cai Q (2015) An enantioselective synthesis of spirobilactams through copper-catalyzed intramolecular double N-arylation and phase separation. Angew Chem 127:11067–11070. https://doi.org/10.1002/anie.201504589

    Article  CAS  Google Scholar 

  114. Cao W, Liu X, Guo J, Lin L, Feng X (2015) Asymmetric tandem 1, 5-hydride shift/ring closure for the synthesis of chiral spirooxindole tetrahydroquinolines. Chem Eur J 21:1632–1636. https://doi.org/10.1002/chem.201404327

    Article  CAS  PubMed  Google Scholar 

  115. Zhu QN, Zhang YC, Xu MM, Sun XX, Yang X, Shi F (2016) Enantioselective construction of tetrahydroquinolin-5-one-based spirooxindole scaffold via an organocatalytic asymmetric multicomponent [3 + 3] cyclization. J Org Chem 8:7898–7907. https://doi.org/10.1021/acs.joc.6b01598

    Article  CAS  Google Scholar 

  116. Kong DL, Lu GP, Wu MS, Shi ZF, Lin Q (2017) One-pot, catalyst-free synthesis of spiro [dihydroquinoline-naphthofuranone] compounds from isatins in water triggered by hydrogen bonding effects. ACS Sustain Chem Eng 5:3465–3470. https://doi.org/10.1021/acssuschemeng.7b00145

    Article  CAS  Google Scholar 

  117. Gill CH, Chate AV, Shinde GY, Sarkate AP, Tiwari SV (2018) One-pot, four-component synthesis and SAR STUDIES of spiro [pyrimido [5, 4-b] quinoline-10, 5′-pyrrolo [2, 3-d] pyrimidine] derivatives catalyzed by β-cyclodextrin in water as potential anticancer agents. Res Chem Intermediat 44:4029–4043. https://doi.org/10.1007/s11164-018-3353-9

    Article  CAS  Google Scholar 

  118. Li SS, Zhu S, Chen C, Duan K, Liu Q, **ao J (2019) Hydride transfer involved redox-neutral cascade cyclizations for construction of spirocyclic bisoxindoles featuring a [3, 4]-fused oxindole moiety. Org Lett 21:1058–1062. https://doi.org/10.1021/acs.orglett.8b04100

    Article  CAS  PubMed  Google Scholar 

  119. Josa-Culleré L, Hirst MG, Lockett JP, Thompson AL, Moloney MG (2019) Spirocyclic tetramates by sequential knoevenagel and [1, 5]-prototropic shift. J Org Chem 84:9671–9683. https://doi.org/10.1021/acs.joc.9b01345

    Article  CAS  PubMed  Google Scholar 

  120. Lv X, Hu F, Duan K, Li SS, Liu Q, **ao J (2019) Aromatization-driven cascade [1, 5]-hydride transfer/spirocyclization promoted by fluorinated alcohols. J Org Chem 84:1833–1844. https://doi.org/10.1021/acs.joc.8b02754

    Article  CAS  PubMed  Google Scholar 

  121. Zhao HW, Tian T, Li B, Yang Z, Pang HL, Meng W, Song XQ, Chen XQ (2015) Diastereoselective synthesis of dispirobarbiturates through et3n-catalyzed [3 + 2] cycloaddition of barbiturate-based olefins with 3-isothiocyanato oxindoles. J Org Chem 80:10380–10385. https://doi.org/10.1021/acs.joc.5b01810

    Article  CAS  PubMed  Google Scholar 

  122. Liu H, Liu Y, Yuan C, Wang GP, Zhu SF, Wu Y, Wang B, Sun Z, **ao Y, Zhou QL, Guo H (2016) Enantioselective synthesis of spirobarbiturate-cyclohexenes through phosphine-catalyzed asymmetric [4 + 2] annulation of barbiturate-derived alkenes with allenoates. Org Lett 18:1302–1305. https://doi.org/10.1021/acs.orglett.6b00239

    Article  CAS  PubMed  Google Scholar 

  123. Krasnov KA, Dorovatovskii PV, Zubavichus YV, Timofeeva TV, Khrustalev VN (2017) Hydride transfer reactions of 5-(2-alkohybenzylidene) barbituric acids: synthesis of 2, 4, 6-trioxoperhydropyrimidine-5-spiro-3′-chromanes. Tetrahedron 73:542–549. https://doi.org/10.1016/j.tet.2016.12.045

    Article  CAS  Google Scholar 

  124. Platonova AY, Glukhareva TV, Zimovets OA, Morzherin YY (2013) Tert-amino effect: the Meth-Cohn and Reinhoudt reactions. Chem Heterocycl Compd 49:357–385. https://doi.org/10.1007/s10593-013-1257-6

    Article  CAS  Google Scholar 

  125. Nagaraju S, Sathish K, Paplal B, Kashinath D (2017) “On-water” catalyst-free, one-pot synthesis of quaternary centered and spiro-tetrahydrothiophene-barbiturate hybrids. Tetrahedron Lett 58:2865–2871. https://doi.org/10.1016/j.tetlet.2017.06.029

    Article  CAS  Google Scholar 

  126. Rajeswari M, Saluja P, Khurana JM (2016) A facile and green approach for the synthesis of spiro [naphthalene-2, 5′-pyrimidine]-4-carbonitrile via a one-pot three-component condensation reaction using DBU as a catalyst. RSC Adv 6:1307–1312. https://doi.org/10.1039/C5RA22817D

    Article  CAS  Google Scholar 

  127. Lohar T, Kumbhar A, Patil A, Kamat S, Salunkhe R (2019) Synthesis and characterization of new quaternary ammonium surfactant [C 18-dabco][Br] and its catalytic application in the synthesis of spirocarbocycles under ultrasonic condition. Res Chem Intermediat 45:1639–1651. https://doi.org/10.1007/s11164-018-3690-8

    Article  CAS  Google Scholar 

  128. Pakravan N, Shayani-Jam H, Beiginejad H, Tavafi H, Paziresh S (2019) A green method for the synthesis of novel spiro compounds: enhancement of antibacterial properties of caffeic acid through electrooxidation in the presence of barbituric acid derivatives. J Electroanal Chem 848:113286. https://doi.org/10.1016/j.jelechem.2019.113286

    Article  CAS  Google Scholar 

  129. Miklós F, Petrisor A, Fülöp F (2015) Alternative conditions for the synthesis of novel spiro [1, 3-N, N-heterocyclic-adamantanes]. Arkivoc 2015:158–171. https://doi.org/10.3998/ark.5550190.p009.268

    Article  CAS  Google Scholar 

  130. Stucchi M, Lesma G, Meneghetti F, Rainoldi G, Sacchetti A, Silvani A (2016) organocatalytic asymmetric Biginelli-like reaction involving isatin. J Org Chem 81:1877–1884. https://doi.org/10.1021/acs.joc.5b02680

    Article  CAS  PubMed  Google Scholar 

  131. Kalogirou AS, Kourtellaris A, Koutentis PA (2019) Synthesis and reactivity of 3′, 5′-dichloro-1H-spiro (quinazoline-2, 4′-[1, 2, 6] thiadiazin)-4 (3H)-ones. Eur J Org Chem 2019:5462–5474. https://doi.org/10.1002/ejoc.201900576

    Article  CAS  Google Scholar 

  132. Zali-Boeini H, Karimi F, Khayat Z, Rudbari HA, Abbasi A (2019) A novel one-pot three-component approach to 4-amino-functionalized spiropyrimidine-2-thiones. J Iran Chem Soc 16:1139–1146. https://doi.org/10.1007/s13738-018-01589-9

    Article  CAS  Google Scholar 

  133. Engen K, Savmarker J, Rosenstrom U, Wannberg J, Lundback T, Jenmalm-Jensen A, Larhed M (2014) Microwave heated flow synthesis of spiro-oxindole dihydroquinazolinone based IRAP inhibitors. Org Process Res Dev 18:1582–1588. https://doi.org/10.1021/op500237k

    Article  CAS  Google Scholar 

  134. Chen X, Zhang JQ, Yin SJ, Li HY, Zhou WQ, Wang XW (2015) Asymmetric construction of spiro [thiopyranoindole-benzoisothiazole] scaffold via a formal [3 + 3] spiroannulation. Org Lett 17:4188–4191. https://doi.org/10.1021/acs.orglett.5b01951

    Article  CAS  PubMed  Google Scholar 

  135. Wang S, Jiang Y, Wu S, Dong G, Miao Z, Zhang W, Sheng C (2016) Meeting organocatalysis with drug discovery: asymmetric synthesis of 3, 3′-spirooxindoles fused with tetrahydrothiopyrans as novel p53-MDM2 inhibitors. Org Lett 18:1028–1031. https://doi.org/10.1021/acs.orglett.6b00155

    Article  CAS  PubMed  Google Scholar 

  136. Maloo P, Roy TK, Sawant DM, Pardasani RT, Salunkhe MM (2016) A catalyst-free, one-pot multicomponent synthesis of spiro-benzimidazoquinazolinones via a knoevenagel-Michael-imine pathway: a microwave assisted approach. RSC Adv 6:41897–41906. https://doi.org/10.1039/C6RA05322J

    Article  CAS  Google Scholar 

  137. Faltracco M, Cotogno S, Vande Velde CM, Ruijter E (2019) Catalytic asymmetric synthesis of diketopiperazines by intramolecular Tsuji-Trost allylation. J Org Chem 84:12058–12070. https://doi.org/10.1021/acs.joc.9b01994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Santra S, Andreana PR (2011) A rapid, one-pot, microwave-influenced synthesis of spiro-2,5-diketopiperazines via a cascade Ugi/6-exo-trig aza-Michael reaction. J Org Chem 76:2261–2264. https://doi.org/10.1021/jo102305q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to GC University, Faisalabad, for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Fawad Zahoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babar, K., Zahoor, A.F., Ahmad, S. et al. Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems. Mol Divers 25, 2487–2532 (2021). https://doi.org/10.1007/s11030-020-10126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10126-x

Keywords

Navigation