Log in

Effect of Printing Temperature on Fatigue and Impact Performance of 3-D Printed Carbon Fiber Reinforced PLA Composites for Ankle Foot Orthotic Device

  • Published:
Mechanics of Composite Materials Aims and scope

Carbon fiber reinforced-polylactic acid (CF-PLA) composites nowadays are widely researched alternative structural materials for their potential application in prosthetic and orthotic implants. The present work firstly consolidates the findings on the application of 3D printing in biomedical and allied fields. Fatigue life and impact strength of 3D printed CF-PLA test specimens were determined. The test specimens were fabricated through the fused deposition modeling (FDM) approach at two printing temperatures. The pronounced effect of printing temperature is characterized by the significant change in fatigue life and impact strength of the FDM specimen. The fatigue life at the printing temperature of 240°C was 2.7 times greater than that at 225°C, whereas the impact strength was greater by 5.93%. The microscopy findings revealed increased diffusion and a reduced number of ridges and pores at higher printing temperature testifying that printing temperature prominently controls the durability and impact response of FDM printed parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. D. Pandey, R. Pandey, and R. P. Tewari, “Influence of process parameters on mechanical strengths of 3D-printed carbon-PLA based composites for orthotics and prosthetics applications,” Compos. Mech. Comput. Appl. An Int. J., 14, No. 2, 29-38 (2023).

    Article  Google Scholar 

  2. M. Domingo-Espin, J. M. Puigoriol-Forcada, A. A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, “Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts,” Mater. Des., 83, 670-677 (2015).

    Article  CAS  Google Scholar 

  3. A. Mishra, A. K. Tiwari, R. Kumar, and W. Ashraf, In: C. Prakash, S. Singh and S. Ramakrishna (eds.), Additive, Subtractive, and Hybrid Technologies: Recent Innovations in Manufacturing, Ch. 11, Springer Nature Switzerland AG (2022), 129-148.

  4. H. Alzyod and P. Ficzere, “Material-dependent effect of common printing parameters on residual stress and warpage deformation in 3D pinting: A comprehensive finite element analysis study,” Polymers (Basel)., 15, No. 13, 1-20 (2023).

    Article  Google Scholar 

  5. A. Dasgupta and P. Dutta, “A comprehensive review on 3D printing technology: current applications and challenges,” Jordan J. Mech. Ind. Eng., 16, No. 4, 529-542 (2022).

    Google Scholar 

  6. J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., 124, 143-157 (2017).

    Article  Google Scholar 

  7. M. Á. Caminero, J. M. Chacón, E. García-Plaza, P. J. Núñez, J. M. Reverte, and J. P. Becar, “Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture,” Polymers (Basel)., 11, No. 5, 1-22 (2019).

    Article  Google Scholar 

  8. H. Alzyod, L. Borbas, and P. Ficzere, “Rapid prediction and optimization of the impact of printing parameters on the residual stress of FDM-ABS parts using L27 orthogonal array design and FEA,” Mater. Today Proc., 93, 583-588 (2023).

    Article  Google Scholar 

  9. M. V. Divyathej, M. Varun, and P. Rajeev, “Analysis of mechanical behavior of 3D printed ABS parts by experiments,” Int. J. Sci. Eng. Res., 7, No. 3, 116-124 (2016).

    Google Scholar 

  10. A. Gaweł, S. Kuciel, A. Liber-Kneć and D. Mierzwiński, “Examination of low-cyclic fatigue tests and poisson’s ratio depending on the different infill density of polylactide (PLA) Produced by the fused deposition modeling method,” Polymers (Basel)., 15, No. 7, 1-12 (2023).

    Article  Google Scholar 

  11. A. P. Agrawal, V. Kumar, J. Kumar, P. Paramasivam, S. Dhanasekaran, and L. Prasad, “An investigation of combined effect of infill pattern, density, and layer thickness on mechanical properties of 3D printed ABS by fused filament fabrication,” Heliyon., 9, No. 6, 1-12 (2023).

    Article  Google Scholar 

  12. Z. Issabayeva and I. Shishkovsky, “Prediction of the mechanical behavior of polylactic acid parts with shape memory effect fabricated by FDM,” Polymers (Basel)., 15, No. 5, 1-25 (2023).

    Article  Google Scholar 

  13. M. Müller, P. Jirků, V. Šleger, R. K. Mishra, M. Hromasová, and J. Novotný, “Effect of infill density in FDM 3D printing on low-cycle stress of bamboo-filled PLA-based material,” Polymers (Basel)., 14, No. 22, 1-16 (2022).

    Article  Google Scholar 

  14. R. Winarso, P. W. Anggoro, R. Ismail, J. Jamari, and A. P. Bayuseno, “Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: A review,” Heliyon., 8, No. 11, 1-14 (2022).

    Article  Google Scholar 

  15. F. He and M. Khan, “Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo- mechanical loads,” Polymers (Basel)., 13, No. 14, 1-23 (2021).

    Article  Google Scholar 

  16. R. K. Chen, Y. **, J. Wensman, and A. Shih, “Additive manufacturing of custom orthoses and prostheses — A review,” Addit. Manuf., 12, 77-89 (2016).

    CAS  Google Scholar 

  17. S. Telfer, J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, and J. Woodburn, “Embracing additive manufacture: implications for foot and ankle orthosis design,” BMC Musculoskelet. Disord., 13, No. 1, 1-9 (2012).

    Article  Google Scholar 

  18. V. Creylman, L. Muraru, J. Pallari, H. Vertommen, and L. Peeraer, “Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot,” Prosthet. Orthot. Int., 37, No. 2, 132–138 (2013).

    Article  PubMed  Google Scholar 

  19. N. G. Harper, E. M. Russell, J. M. Wilken and R. R. Neptune, “Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: A Comparison of patient walking performance,” J. Biomech. Eng., 136, No. 9, 1-7 (2014).

    Article  Google Scholar 

  20. K. Al-khazraji, J. Kadhim, and P. S. Ahmad, “Improving mechanical and fatigue characteristic of trans-tibial prosthetic socket,” Proc. Int.. Conf. on Industrial Engineering and Operations Management (2015).

  21. W. Mankai, S. Ben Brahim, B. Ben Smida, R. Ben Cheikh, and M. Chafra, “Mechanical behavior of a lower limb prosthetic socket made of natural fiber reinforced composite,” J. Eng. Res., 9, No. 2, 269-277 (2021).

  22. E. N. Abbas, M. Al-Waily, T. M. Hammza, and M. J. Jweeg, “An investigation to the effects of impact strength on laminated notched composites used in prosthetic sockets manufacturing,” Proc. IOP Conf. Series: Mater. Sci. and Eng., 1-17 (2020).

  23. T. Letcher and M. Waytashek, “Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer,” Proc. ASME Int. Mech. Eng. Congress and Exposition, 1-8 (2014).

  24. B. Gong, S. Cui, Y. Zhao, Y. Sun, and Q. Ding, “Strain-controlled fatigue behaviors of porous PLA- based scaffolds by 3D-printing technology,” J. Biomater. Sci. Polym. Ed., 28, No. 18, 2196-2204 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. A. Dadashi and M. Azadi, “Experimental bending fatigue data of additive-manufactured PLA biomaterial fabricated by different 3D printing parameters,” Prog. Addit. Manuf., 8, 255-263 (2023).

    Article  Google Scholar 

  26. A. D. Pertuz, S. Díaz-Cardona, and O. A. González-Estrada, “Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique,” Int. J. Fatigue, 130, 1-12 (2020).

    Article  Google Scholar 

  27. N. Magare and M. S. Harne, “Parametric investigation of FDM Process parameter on impact strength of 3D-printed part,” Int. J. Res. Appl. Sci. Eng. Technol., 10, No. 11, 1946-1951 (2022).

    Article  Google Scholar 

  28. A. H. Abood, H. A. Habeeb, and M. M. Mohammad, “Printing angles of polylactic acid and carbon particles / polylactic acid composite and their effect on impact strength of 3D printers,” J. Mech. Eng. Res. Dev., 44, No. 3, 21-29 (2021).

    Google Scholar 

  29. V. S. Jatti, S. V. Jatti, A. P. Pate,l and V. S. Jatti, “A Study On Effect Of Fused Deposition Modeling Process Parameters On Mechanical Properties,” Int. J. Sci. Technol. Res., 8, No. 11, 689-693 (2019).

  30. M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj, and A. Rahaman, “Effect of FDM process parameters on mechanical properties of 3D - printed carbon fibre-PLA composite,” Prog. Addit. Manuf., 6, 63-69 (2020).

    Article  Google Scholar 

  31. H. Alzyod and P. Ficzere, “Optimizing fused filament fabrication process parameters for quality enhancement of PA12 parts using numerical modeling and taguchi method,” Heliyon., 9, No. 3, 1-11 (2023).

    Article  Google Scholar 

  32. S. Guessasma, S. Belhabib, and H. Nouri, “Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol using Fused Deposition Modelling,” Polymers (Basel)., 11, No. 7, 1-16 (2019).

    Article  Google Scholar 

  33. A. A. D’Amico, A. Debaie, and A. M. Peterson, “Effect of layer thickness on irreversible thermal expansion and inter- layer strength in fused deposition modeling,” Rapid Prototyp. J., 23, No. 5, 943-953 (2017).

    Article  Google Scholar 

  34. K. Abouzaid, S. Guessasma, S. Belhabib, D. Bassir, and A. Chouaf, “Printability of co-polyester using fused deposition modelling and related mechanical performance,” Eur. Polym. J., 108, 262-273 (2018).

    Article  CAS  Google Scholar 

  35. K. Abouzaid, D. Bassir, S. Guessasma, and H. Yue, “Modelling the process of fused deposition modelling and the effect of temperature on the mechanical, roughness, and porosity properties of resulting composite products,” Mech. Compos. Mater., 56, No. 6, 805-816 (2021).

    Article  Google Scholar 

  36. A. A. Ansari and M. Kamil, “Izod impact and hardness properties of 3D printed lightweight CF-reinforced PLA composites using design of experiment,” Int. J. Light. Mater. Manuf., 5, No. 3, 369-383 (2022).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Pandey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, D., Pandey, R., Mishra, A. et al. Effect of Printing Temperature on Fatigue and Impact Performance of 3-D Printed Carbon Fiber Reinforced PLA Composites for Ankle Foot Orthotic Device. Mech Compos Mater (2024). https://doi.org/10.1007/s11029-024-10209-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11029-024-10209-y

Keywords

Navigation