Log in

Isogeometric cable elements based on B-spline curves

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, the isogeometric cable elements based on B-spline curves are developed for the static analysis of cable structures under conservative static loads. For this, the incremental equation of cable is presented from a continuum theory by employing the total Lagrangian formulation for the geometrically non-linear analysis. The B-spline basis functions are utilized to represent the geometry of cables as well as the numerical approximation of a solution space. The h-, p- and k-refinement strategies are implemented to enrich the basis functions. Therefore, they increase the accuracy of solution fields. The penalty method is also used for the purpose of determining the initial configuration of slack cable as an alternative from-finding approach. The robustness and accuracy of the proposed elements as well as the penalty method developed by study are verified by comparing the predictions with the results given by other authors using different analytical and numerical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Irvine HM (1992) Cable structures. Dover Publications, New York

    Google Scholar 

  2. O’Brien W, Francis A (1964) Cable movements under two-dimensional loads. J Struct Div ASCE 90:89–123

    Google Scholar 

  3. Jayaraman HB, Knudson WC (1981) A curved element for the analysis of cable structures. Comput Struct 14:325–333

    Article  Google Scholar 

  4. Chunjiang W, Renpeng W, Shilin D, Ruojun Q (2003) A new catenary cable element. Int J Space Struct 18:269–275

    Article  Google Scholar 

  5. Andreu A, Gil L, Roca P (2006) A new deformable catenary element for the analysis of cable net structures. Comput Struct 84:1882–1890

    Article  Google Scholar 

  6. Yang Y, Tsay JY (2007) Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method. Int J Struct Stab Dyn 7:571–588

    Article  MathSciNet  MATH  Google Scholar 

  7. Such M, Jimenez-Octavio JR, Carnicero A, Lopez-Garcia O (2009) An approach based on the catenary equation to deal with static analysis of three dimensional cable structures. Eng Struct 31:2162–2170

    Article  Google Scholar 

  8. Thai HT, Kim SE (2011) Nonlinear static and dynamic analysis of cable structures. Finite Elem Anal Des 47:237–246

    Article  Google Scholar 

  9. Impollonia N, Ricciardi G, Saitta F (2011) Statics of elastic cables under 3D point forces. Int J Solids Struct 48:1268–1276

    Article  MATH  Google Scholar 

  10. Salehi Ahmad Abad M, Shooshtari A, Esmaeili V, Naghavi Riabi A (2013) Nonlinear analysis of cable structures under general loadings. Finite Elem Anal Des 73:11–19

    Article  Google Scholar 

  11. Gambhir ML, Batchelor Bd (1979) Finite element study of the free vibration of 3-D cable networks. Int J Solids Struct 15:127–136

    Article  MATH  Google Scholar 

  12. Ozdemir H (1979) A finite element approach for cable problems. Int J Solids Struct 15:427–437

    Article  MATH  Google Scholar 

  13. Coyette JP, Guisset P (1988) Cable network analysis by a nonlinear programming technique. Eng Struct 10:41–46

    Article  Google Scholar 

  14. Ali HM, Abdel-Ghaffar AM (1995) Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings. Comput Struct 54:461–492

    Article  MATH  Google Scholar 

  15. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Aristodemo M (1985) A high-continuity finite element model for two-dimensional elastic problems. Comput Struct 21:987–993

    Article  MATH  Google Scholar 

  17. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  MathSciNet  Google Scholar 

  18. Bilotta A, Formica G, Turco E (2010) Performance of a high-continuity finite element in three-dimensional elasticity. Int J Numer Methods Biomed Eng 26:1155–1175

    Article  MATH  Google Scholar 

  19. Cazzani A, Malag M, Turco E (2014b) Isogeometric analysis of plane-curved beams. Math Mech Solids 1081286514531265

  20. Cazzani A, Malag M, Turco E, Stochino F (2015) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 1081286515577043

  21. Cazzani A, Malag M, Turco E (2014a) Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech Thermodyn 28:139–156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Greco L, Cuomo M (2013) B-spline interpolation of Kirchhoff–Love space rods. Comput Methods Appl Mech Eng 256:251–269

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Greco L, Cuomo M (2014) An implicit \(G^1\) multi patch B-spline interpolation for KirchhoffLove space rod. Comput Methods Appl Mech Eng 269:173–197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Borst RD, Crisfield MA, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New Jersey

    Book  MATH  Google Scholar 

  26. Piegl L, Tiller W (1995) The NURBS book. Monographs in Visual Communications, Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  27. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  28. Liu GR, Quek SS (2013) Finite element method: a practical course. Butterworth-Heinemann, Amsterdam

    MATH  Google Scholar 

  29. Desai YM, Popplewell N, Shah AH, Buragohain DN (1988) Geometric nonlinear static analysis of cable supported structures. Comput Struct 29:1001–1009

    Article  MATH  Google Scholar 

  30. Greco L, Impollonia N, Cuomo M (2014) A procedure for the static analysis of cable structures following elastic catenary theory. Int J Solids Struct 51:1521–1533

    Article  Google Scholar 

  31. Lewis WJ (1989) The efficiency of numerical methods for the analysis of prestressed nets and pin-jointed frame structures. Comput Struct 33:791–800

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology through NRF-2015R1A2A1A01007535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, S., Kim, NI. & Lee, J. Isogeometric cable elements based on B-spline curves. Meccanica 52, 1219–1237 (2017). https://doi.org/10.1007/s11012-016-0454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0454-7

Keywords

Navigation