Log in

Promising protein biomarkers in the early diagnosis of Alzheimer’s disease

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer’s have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for develo** effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akram A, Christoffel D, Rocher AB, Bouras C, Kövari E, Perl DP, Morrison JH, Herrmann FR, Haroutunian V, Giannakopoulos P, Hof PR (2008) Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: relationship with the progression of Alzheimer’s disease. Neurobiol Aging 29(9):1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Alam J, Sharma L (2019) Potential enzymatic targets in Alzheimer’s: a comprehensive review. Curr Drug Targets 20:316–339

    Article  CAS  PubMed  Google Scholar 

  • Alam J, Jaiswal V, Sharma L (2020) Screening of antibiotics against β-amyloid as anti-amyloidogenic agents. A drug repurposing approach. Curr Comput-Aid Drug. https://doi.org/10.2174/1573409916666200703171732

    Article  Google Scholar 

  • Angelucci F, Čechová K, Průša R, Hort J (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 25:303–313

    Article  CAS  PubMed  Google Scholar 

  • Ausó E, Gómez-Vicente V, Esquiva G (2020) Biomarkers for Alzheimer’s disease early diagnosis. J Pers Med 10(3):114

    Article  PubMed Central  Google Scholar 

  • Bandla P (2021) Chemokines in the Central nervous system and Alzheimer’s disease. J Multiple Scler 8(5):249

    Google Scholar 

  • Bar R, Boehm-Cagan A, Luz I, Kleper-Wall Y, Michaelson DM (2017) The effects of apolipoprotein E genotype, α-synuclein deficiency, and sex on brain synaptic and Alzheimer’s disease-related pathology. Alzheimers Dement 6(10):1–11

    Google Scholar 

  • Basilico C, Arnesano A, Galluzzo M, Comoglio PM, Michieli P (2008) A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J Biol Chem 283:21267–21277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N, Ayakta N, Cantwell A, Janabi M, Lauriola M, O’Neil JP, Gorno-Tempini ML, Miller ZA, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140(12):3286–3300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj A, Myers MP, Buratti E, Baralle FE (2013) Characterizing TDP-43 interaction with its RNA targets. Nucleic Acids Res 41(9):5062–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Kim K, Nakazawa H, Umetsu M, Teizer W (2016) Modulating the microtubule–tau interactions in biomotility systems by altering the chemical environment. Integr Biol 8(12):1296–1300

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Kim K, Teizer W (2017a) Remodeling Tau and prion proteins using nanochaperons. Adv Biosyst 1(10):1700108

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Kim K, Teizer W (2017b) Restoring the processivity of kinesin nano-motors. Adv Biosyst 1(3):1600034–1600040

    Article  Google Scholar 

  • Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125

    Article  CAS  PubMed  Google Scholar 

  • Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, Hansson O, Wallin A, Zetterberg H, Blennow K, Öhrfelt A (2014) SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener 9:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carecchioa M, Comi C (2011) The role of osteopontin in neurodegenerative diseases. J Alzheimer’s Dis 25:179–185

    Article  CAS  Google Scholar 

  • Chapman G, Shanmugalingam U, Smith PD (2019) The role of Neuronal Pentraxin 2 (NP2) in regulating glutamatergic signaling and neuropathology. Front Cell Neurosci 13:575

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee P, Pedrini S, Stoop E, Goozee K, Villemagne VL, Asih PR, Verberk IMW, Dave P, Taddei K, Sohrabi HR, Zetterberg H, Blennow K, Teunissen CE, Vanderstichele HM, Martins RN (2021) Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 11(27):1–10

    Google Scholar 

  • Chen Q, Veenman CL, Reiner A (1996) Cellular expression of ionotropic glutamate receptor subunits on specific striatal neuron types and its implication for striatal vulnerability in glutamate receptor-mediated excitotoxicity. Neuroscience 73:715–731

    Article  CAS  PubMed  Google Scholar 

  • Chiarini A, Armato U, Hu P, Dal Prà I (2020) CaSR antagonist (calcilytic) NPS 2143 hinders the release of neuroinflammatory IL-6, soluble ICAM-1, RANTES, and MCP-2 from Aβ-exposed human cortical astrocytes. Cells 9(6):1386

    Article  CAS  PubMed Central  Google Scholar 

  • Cummings J, Lee G, Zhong K, Fonseca J, Taghva K (2021) Alzheimer’s disease drug development pipeline. Alzheimers Dement 7(1):e12179

    Google Scholar 

  • Duong T, Nikolaeva M, Acton PJ (1997) C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer’s disease. Brain Res 749(1):152–156

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Elahi FM, Casaletto KB, La Joie R, Walters SM, Harvey D, Wolf A, Edwards L, Rivera-Contreras W, Karydas A, Cobigo Y, Rosen HJ, DeCarli C, Miller BL, Rabinovici GD, Kramer JH (2020) Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimers Dement 16(4):681–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Ethell IM, Ethell DW (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res 85(13):2813–2823

    Article  CAS  PubMed  Google Scholar 

  • Fenton H, Finch PW, Rubin JS, Rosenberg JM, Taylor WG, Kuo-Leblanc V, Rodriguez-Wolf M, Baird A, Schipper HM, Stopa EG (1998) Hepatocyte growth factor (HGF/SF) in Alzheimer’s disease. Brain Res 779:262–270

    Article  CAS  PubMed  Google Scholar 

  • Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS, Varela ELP, Monteiro MC (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Gustaw-Rothenberg K, Lerner A, Bonda DJ, Lee HG, Zhu X, Perry G, Smith MA (2010) Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med 4(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Hanson JE (2017) Identifying faulty brain circuits. Elife 6:e26942

    Article  PubMed  PubMed Central  Google Scholar 

  • Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10):1088–1093. Erratum in: Nat Genet. 2009; 41(10):1156. Erratum in: Nat Genet. 2013; 45(6):712

  • Hashimoto Y, Umahara T, Hanyu H, Iwamoto T, Matsuoka M (2017) Calmodulin-like skin protein is downregulated in human cerebrospinal fluids of Alzheimer’s disease patients with apolipoprotein E4; a pilot study using postmortem samples. Neurol Res 39(9):767–772

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Tajima H, Hashimoto Y, Matsuoka M (2014) Secreted calmodulin-like skin protein ameliorates scopolamine-induced memory impairment. NeuroReport 25(9):725–729

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wu L, Wu DZ (1991) The color vision in patients with optic neuritis and chronic open-angle glaucoma. Yan Ke Xue Bao 7(2):92–94

    CAS  PubMed  Google Scholar 

  • Husain A, Rashid M, Akhter A, Mishra R, Gupta D (2010) Design, synthesis and pharmacological activities of novel N-1-2-(substituted phenyl)-4-oxo-1, 3-thiazolan-3-yl-2, 2-diphenyl-acetamides. Int J Pharm Sci Rev Res 5(2):102–106

    CAS  Google Scholar 

  • Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N, Arai H, Furukawa K (2016) Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem 136(2):258–261

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto N, Nishiyama E, Ohwada J, Arai H (1994) Demonstration of CRP immunoreactivity in brains of Alzheimer's disease: immunohistochemical study using formic acid pretreatment of tissue sections. Neurosci Lett 177(1-2):23–26

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2014) Neuropathology of dementia disorders. J Alzheimers Dis Parkinsonism 4:1

    Article  Google Scholar 

  • Jayaprakash GK, Swamy BEK, Sánchez JPM, Li X, Sharma SC, Lee SL (2020) Electrochemical and quantum chemical studies of cetylpyridinium bromide modified carbon electrode interface for sensor applications. J Mol Liq 315:113719

    Article  CAS  Google Scholar 

  • Kamphuis W, **teMiddeldorp LienekeKooijman, Sluijs JA, Evert-JanKooi MartinaMoeton, Freriks M, Mizee MR (2014) Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol Aging 35(3):492–510

    Article  CAS  PubMed  Google Scholar 

  • Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Kim MO, Suh HS, Brosnan CF, Lee SC (2004) Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta. J Neurochem 90(2):297–308

    Article  CAS  PubMed  Google Scholar 

  • Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, Prabakaran T, Nilsson SK, Kjaergaard MM, Bakke O, Nykjær A, Olivecrona G, Petersen CM, Nielsen MS (2011) SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci 124(Pt 7):1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of Tau protein in Alzheimer disease. Int J Alzheimer’s Dis 2012:731526

    Google Scholar 

  • Korff A, Liu C, Ginghina C, Shi M, Zhang J (2013) α-Synuclein in cerebrospinal fluid of Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 36(4):679–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, Tripathi M, Dey AB, Dey S (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS ONE 8(4):e61560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Sharma A, Sharma L (2020) A comprehensive review of Alzheimer’s Association with related proteins: pathological role and therapeutic significance. Curr Neuropharmacol 18(8):674–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo PH, Chiang CH, Wang YT, Doudeva LG, Yuan HS (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 42(7):4712–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusakari S, Nawa M, Sudo K, Matsuoka M (2018) Calmodulin-like skin protein protects against spatial learning impairment in a mouse model of Alzheimer disease. J Neurochem 144(2):218–233

    Article  CAS  PubMed  Google Scholar 

  • Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Cullen NC, Höglund K, Zetterberg H, Blennow K, Portelius E (2019) The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol 137(1):89–102

    Article  PubMed  Google Scholar 

  • Lee TW, Tsang VW, Loef EJ, Birch NP (2017) Physiological and pathological functions of neuroserpin: regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol 62:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Kim SJ, Hong S, Kim Y (2019) Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 51(5):1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewczuk P, Popp J, Lelental N, Kölsch H, Maier W, Kornhuber J, Jessen F (2012) Cerebrospinal fluid soluble amyloid-β protein precursor as a potential novel biomarkers of Alzheimer’s disease. J Alzheimers Dis 28(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Li W, Poteet E, **e L, Liu R, Wen Y, Yang S (2011) Regulation of matrix metalloproteinase 2 by oligomeric amyloid β protein. Brain Res 1387:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YH, Huang CJ, Chao JR, Chen ST, Lee SF, Yen JJ, Yang-Yen HF (2000) Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colonystimulating factor. Mol Cell Biol 20:2734–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsten K, de Vrij FM, Verhoef LG, Fischer DF, van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157(3):417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RM, van Groen T, Katre A, Cao D, Kadisha I, Ballinger C, Wang L, Carroll SL, Li L (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Lin H, He X, Chen L, Dai Y, Jia W, Xue X, Tao J, Chen L (2020) Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry 10(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M (1999) Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57:161–177

    CAS  PubMed  Google Scholar 

  • Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF, Allain FH (2013) Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20(12):1443–1449

    Article  CAS  PubMed  Google Scholar 

  • Ma LZ, Tan L, Bi YL, Shen XN, Xu W, Ma YH, Li HQ, Dong Q, Yu JT (2020) Dynamic changes of CSF sTREM2 in preclinical Alzheimer’s disease: the CABLE study. Mol Neurodegener 15(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjula R, Anuja K, Alcain FJ (2021) SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front Pharmacol 11:585821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margiotta A (2021) Role of SNAREs in neurodegenerative diseases. Cells 10(5):991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marnell L, Mold C, Du Clos TW (2005) C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol 117(2):104–111

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56(1):127–129

    Article  CAS  PubMed  Google Scholar 

  • Masunaga H, Fujise N, Shiota A, Ogawa H, Sato Y, Imai E, Yasuda H, Higashio K (1998) Preventive effects of the deleted form of hepatocyte growth factor against various liver injuries. Eur J Pharmacol 342:267–279

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M (2015) Protective effects of Humanin and calmodulin-like skin protein in Alzheimer’s disease and broad range of abnormalities. Mol Neurobiol 51(3):1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Mattei V, Manganelli V, Martellucci S, Capozzi A, Mantuano E, Longo A, Ferri A, Garofalo T, Sorice M, Misasi R (2020) A multimolecular signaling complex including PrPC and LRP1 is strictly dependent on lipid rafts and is essential for the function of tissue plasminogen activator. J Neurochem 152:468–481

    Article  CAS  PubMed  Google Scholar 

  • Mavroudis IA, Petridis F, Chatzikonstantinou S, Kazis D (2020) A meta-analysis on CSF neurogranin levels for the diagnosis of Alzheimer’s disease and mild cognitive impairment. Aging Clin Exp Res 32(9):1639–1646

    Article  PubMed  Google Scholar 

  • Mi Z, Abrahamson EE, Ryu AY, Fish KN, Sweet RA, Mufson EJ, Ikonomovic MD (2017) Loss of precuneus dendritic spines immunopositive for spinophilin is related to cognitive impairment in early Alzheimer’s disease. Neurobiol Aging 55:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michán S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 105(20):7327–7332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller EG, Edwin TH, Stokke C, Navelsaker SS, Babovic A, Bogdanovic N, Knapskog AB, Revheim ME (2019) Amyloid-β PET-Correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer´s disease diagnosis in a memory clinic. PLoS ONE 14(8):e0221365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy MP, LeVine H (2010) Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 19(1):311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554(7691):249–254

    Article  CAS  PubMed  Google Scholar 

  • Nilsson K, Gustafson L, Hultberg B (2011) C-reactive protein level is decreased in patients with Alzheimer’s disease and related to cognitive function and survival time. Clin Biochem 44(14–15):1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Oddo S (2008) The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med 12(2):363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oe S, Hiros T, Fujii H, Yasuchika K, Nishio T, Iimuro Y, Morimoto T, Nagao M, Yamaoka Y (2001) Continuous intravenous infusion of deleted form of hepatocyte growth factor attenuates hepatic ischemia-reperfusion injury in rats. J Hepatol 34:832–839

    Article  CAS  PubMed  Google Scholar 

  • Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Huss AM, Neugebauer H, von Arnim CAF, Diehl-Schmid J, Grimmer T, Kornhuber J, Lewczuk P, Danek A, Consortium for Frontotemporal Lobar Degeneration German, Ludolph AC, Otto M (2019) Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis 67(2):481–488

    Article  CAS  PubMed  Google Scholar 

  • Öhrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Hansson O, Zetterberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K (2016) The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimers Res Ther 8(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Öhrfelt A, Dumurgier J, Zetterberg H, Vrillon A, Ashton NJ, Kvartsberg H, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K (2020) Full-length and C-terminal neurogranin in Alzheimer’s disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays. Alzheimers Res Ther 12(1):168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papin S, Paganetti P (2020) Emerging evidences for an implication of the neurodegeneration-associated protein TAU in cancer. Brain Sci 10(11):862

    Article  CAS  PubMed Central  Google Scholar 

  • Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A (2013) Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis 4(12):e975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penke B, Bogár F, Paragi G, Gera J, Fülöp L (2019) Key peptides and proteins in Alzheimer’s disease. Curr Protein Pept Sci 20(6):577–599

    Article  CAS  PubMed  Google Scholar 

  • Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS ONE 6:e16032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietilä M, Sahgal P, Peuhu E, Jäntti NZ, Paatero I, Närvä E, Al-Akhrass H, Lilja J, Georgiadou M, Andersen OM, Padzik A, Sihto H, Joensuu H, Blomqvist M, Saarinen I, Boström PJ, Taimen P, Ivaska J (2019) SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun 10(1):2340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7(2):103–117

    Article  CAS  PubMed  Google Scholar 

  • Roos F, Terrell TG, Godowski PJ, Chamow SM, Schwall RH (1992) Reduction of α-naphthylisothiocyanate-induced hepatotoxicity by recombinant human hepatocyte growth factor. Endocrinology 131:2540–2544

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh MN, Shi J, Lee M, Arnold L, Al-Hasan Y, Heim J, McGeer P (2018) Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: preliminary findings. BMC Neurol 18(1):155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakura Y, Kaibori M, Oda M, Okumura T, Kwon AH, Kamiyama Y (2000) Recombinant human hepatocyte growth factor protects the liver against hepatic ischemia and reperfusion injury in rats. J Surg Res 92:261–266

    Article  CAS  PubMed  Google Scholar 

  • Schipke CG, De Vos A, Fuentes M, Jacobs D, Vanmechelen E, Peters O (2018) Neurogranin and BACE1 in CSF as potential biomarkers differentiating depression with cognitive deficits from early alzheimer’s disease: a pilot study. Dement Geriatr Cogn Dis Extra 8(2):277–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ (2002) Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol 52(2):168–174

    Article  PubMed  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415(6869):321–326

    Article  CAS  PubMed  Google Scholar 

  • Selvaraju R, Bernasconi L, Losberger C, Graber P, Kadi L, Avellana-Adalid V, Picard-Riera N, Van Evercooren AB, Cirillo R, Kosco-Vilbois M, Feger G, Papoian R, Boschert U (2004) Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol Cell Neurosci 25:707–721

    Article  CAS  PubMed  Google Scholar 

  • Senanarong V, Wachirutmangur L, Rattanabunnakit C, Srivanitchapoom P, Udomphanthurak S (2020) Plasma alpha synuclein (a-syn) as a potential biomarker of diseases with synucleinopathy. Alzheimer’s Dement 16(S4):e044409

    Article  Google Scholar 

  • Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM (2011) Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol 122(3):285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SK (2010) Hepatocyte growth factor in synaptic plasticity and Alzheimer’s disease. Sci World J 10:457–461

    Article  CAS  Google Scholar 

  • Sharma L, Kumar D, Bisht GS (2020) In-silico and in-vitro evaluation of imidazolone fused quinazolinone derivatives as anti-amyloidal agents in Alzheimer’s: Nonhuman/Lead optimization studies. Alzheimer’s & Dement 16(S9):e038321

    Google Scholar 

  • Shiki Y, Ohnishi H, Muto Y, Matsumoto K, Nakamura T (1992) Direct evidence that hepatocyte growth factor is a hepatotrophic factor for liver regeneration and for potent antihepatitis effect in vivo. Hepatology 16:1227–1235

    Google Scholar 

  • Shim KH, Kang MJ, Suh JW, Pyun JM, Ryoo N, Park YH, Youn YC, Jang JW, Jeong JH, Park KW, Choi SH, Suk K, Lee HW, Ko PW, Lee CN, Lim TS, An SSA, Kim S, Alzheimer’s Disease All Markers (ADAM) Research group (2020) CSF total tau/α-synuclein ratio improved the diagnostic performance for Alzheimer’s disease as an indicator of tau phosphorylation. Alzheimers Res Ther 12(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara ML, Kim JH, Garcia VA, Cantor H (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29(1):68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, Waldemar G, Minthon L, Blennow K (2007) Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64:366–370

    Article  PubMed  Google Scholar 

  • Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52(1):15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919

    Article  CAS  PubMed  Google Scholar 

  • Soares HD, Potter WZ, Pickering E, Kuhn M, Immermann FW, Shera DM, Ferm M, Dean RA, Simon AJ, Swenson F, Siuciak JA, Kaplow J, Thambisetty M, Zagouras P, Koroshetz WJ, Wan HI, Trojanowski JQ, Shaw LM (2012) Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 69(10):1310–1317

    Article  PubMed  PubMed Central  Google Scholar 

  • Song S, Kim SY, Hong YM, Jo DG, Lee JY, Shim SM, Chung CW, Seo SJ, Yoo YJ, Koh JY, Lee MC, Yates AJ, Ichijo H, Jung YK (2003) Essential role of E2–25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol Cell 12(3):553–563

    Article  CAS  PubMed  Google Scholar 

  • Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontag JM, Nunbhakdi-Craig V, Sontag E (2013) Leucine carboxyl methyltransferase 1 (LCMT1)-dependent methylation regulates the association of protein phosphatase 2A and Tau protein with plasma membrane microdomains in neuroblastoma cells. J Biol Chem 288(38):27396–27405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-Calvet M, Capell A, Araque Caballero MÁ, Morenas-Rodríguez E, Fellerer K, Franzmeier N, Kleinberger G, Eren E, Deming Y, Piccio L, Karch CM, Cruchaga C, Paumier K, Bateman RJ, Fagan AM, Morris JC, Levin J, Danek A, Jucker M, Masters CL, Rossor MN, Ringman JM, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C (2018) Dominantly Inherited Alzheimer Network; Alzheimer’s Disease Neuroimaging Initiative. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med 10(12):e9712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Schlepckow K, Araque Caballero MÁ, Franzmeier N, Capell A, Fellerer K, Nuscher B, Eren E, Levin J, Deming Y, Piccio L, Karch CM, Cruchaga C, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C (2019) Alzheimer’s disease Neuroimaging Initiative. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 14(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sultana R, Banks WA, Butterfield DA (2010) Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer’s disease. J Neurosci Res 88(3):469–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Chen WD, Wang YD (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221

    PubMed  PubMed Central  Google Scholar 

  • Swanson A, Willette AA (2016) Alzheimer’s Disease Neuroimaging Initiative Neuronal Pentraxin 2 predicts medial temporal atrophy and memory decline across the Alzheimer’s disease spectrum. Brain Behav Immun 58:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2000) Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. J Neurol Sci 175(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Takeshita K, Yamamoto K, Ito M, Kondo T, Matsushita T, Hirai M, Kojima T, Nishimura M, Nabeshima Y, Loskutoff DJ, Saito H, Murohara T (2002) Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, “Klotho” mouse. Semin Thromb Hemost 28:545–554

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Sun X, Hou FS, Oh HW, Hilgenberg LG, Hol EM, van Leeuwen FW, Smith MA, O’Dowd DK, Schreiber SS (2007) Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ 14(10):1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ (2016) Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer’s disease. BMC Neurosci 17(1):50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed 14:5541–5554

    Article  CAS  Google Scholar 

  • Town T, Tan J, Flavell RA, Mullan M (2005) T-cells in Alzheimer’s disease”. NeuroMol Med 7(3):255–264

    Article  CAS  Google Scholar 

  • Tramutola A, Triani F, Di Domenico F, Barone E, Cai J, Klein JB, Perluigi M, Butterfield DA (2018) Poly-ubiquitin profile in Alzheimer disease brain. Neurobiol Dis 118:129–141

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi Y, Kakimoto K, Nakajima M, Akatsu H, Yamamoto T, Ogawa K, Ohnishi T, Daikuhara Y, Yamada T (2003) Increased hepatocyte growth factor level in cerebrospinal fluid in Alzheimer’s disease. Acta Neurol Scand 107:81–86

    Article  CAS  PubMed  Google Scholar 

  • Tucker HM, Kihiko-Ehmann M, Estus S (2002) Urokinase-type plasminogen activator inhibits amyloid-beta neurotoxicity and fibrillogenesis via plasminogen. J Neurosci Res 70:249–255

  • Urbina FL, Gupton SL (2020) SNARE-mediated exocytosis in neuronal development. Front Mol Neurosci 13:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallortigara J, Whitfield D, Quelch W, Alghamdi A, Howlett D, Hortobágyi T, Johnson M, Attems J, O’Brien JT, Thomas A, Ballard CG, Aarsland D, Francis PT (2016) Decreased levels of VAMP2 and monomeric alpha-synuclein correlate with duration of dementia. J Alzheimers Dis 50(1):101–110

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Köycü S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and down patients. Science 279(5348):242–247

    Article  PubMed  Google Scholar 

  • Vimal SK, Zuo H, Wang Z, Wang H, Long Z, Bhattacharyya S (2020) Self-Therapeutic nanoparticle that alters tau protein and ameliorates tauopathy toward a functional nanomedicine to tackle Alzheimer’s. Small 16(16):1906861

    Article  CAS  Google Scholar 

  • von Bernhardi R, Ramirez G (2001) Microglia-astrocyte interaction in Alzheimer’s disease: friends or foes for the nervous system? Biol Res 34(2):123–128

    Google Scholar 

  • Wang S, Bellen HJ (2015) The retromer complex in development and disease. Development 142(14):2392–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang BL (2006) SNAREs in neurons–beyond synaptic vesicle exocytosis (Review). Mol Membr Biol 23(5):377–384

    Article  PubMed  CAS  Google Scholar 

  • Wang XX, Tan MS, Yu JT, Tan L (2014) Matrix metalloproteinases and their multiple roles in Alzheimer’s disease. Biomed Res Int 2014:908636

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Tan M, Yu J, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3(10):136

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Huang L, Wu L, Lan J, Feng X, **** Li, Peng Y (2020) The MMP-2/TIMP-2 system in Alzheimer disease. CNS Neurol Disord Drug Targets 19(6):402–416

    Article  CAS  PubMed  Google Scholar 

  • Weitzdoerfer R, Fountoulakis M, Lubec G (2001) Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl 61:95–107

    Google Scholar 

  • Weller J, Budson A (2018) Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 7:F1000 Faculty Rev-1161

  • Whitfield DR, Vallortigara J, Alghamdi A, Howlett D, Hortobágyi T, Johnson M, Attems J, Newhouse S, Ballard C, Thomas AJ, O’Brien JT, Aarsland D, Francis PT (2014) Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer’s disease: association with cognitive impairment. Neurobiol Aging 35(12):2836–2844

    Article  CAS  PubMed  Google Scholar 

  • Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2008) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31:747–757

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Kawas LH, Harding JW (2016) Facilitation of the brain hepatocyte growth factor/ C-met receptor system: a new approach to treat Alzheimer’s disease. Austin J Clin Neurol 3(1):1086

    Google Scholar 

  • Wu W, Asakawa T, Yang Q, Zhao J, Lu L, Luo Y, Gong P, Han S, Li W, Namba H, Wang L (2017) Effects of neuroserpin on clinical outcomes and inflammatory markers in Chinese patients with acute ischemic stroke. Neurol Res 39:862–868

    Article  CAS  PubMed  Google Scholar 

  • **ang Y, **n J, Le W, Yang Y (2020) Neurogranin: a potential biomarker of neurological and mental diseases. Front Aging Neurosci 12:584743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao MF, Xu D, Craig MT, Pelkey KA, Chien CC, Shi Y, Zhang J, Resnick S, Pletnikova O, Salmon D, Brewer J, Edland S, Wegiel J, Tycko B, Savonenko A, Reeves RH, Troncoso JC, McBain CJ, Galasko D, Worley PF (2017) NPTX2 and cognitive dysfunction in Alzheimer’s disease. Elife 6:e23798

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Tan L, Yu JT (2015) The role of PICALM in Alzheimer’s disease. Mol Neurobiol 52(1):399–413

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Tan CC, Cao XP, Tan L (2020) Alzheimer’s Disease Neuroimaging Initiative. Association of Alzheimer’s disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging 12(21):21202–21219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Tsubouchi H, Daikuhara Y, Prat M, Comoglio PM, McGeer PL, McGeer EG (1994) Immunohistochemistry with antibodies to hepatocyte growth factor and its receptor protein (c-MET) in human brain tissues. Brain Res 637:308–312

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Takeshita K, Kojima T, Takamatsu J, Saito H (2005) Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc Res 66:276–285

    Article  CAS  PubMed  Google Scholar 

  • Yepes M (2021) The plasminogen activating system in the pathogenesis of Alzheimer’s disease. Neural Regen Res 16(10):1973–1977

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo JC, Ty L, Park JS, Hah YS, Park N, Hong SG, Park JY, Yoon TJ (2013) SYT14L, especially its C2 domain, is involved in regulating melanocyte differentiation. J Dermatol Sci 72(3):246–251

    Article  CAS  PubMed  Google Scholar 

  • Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S, Yao I, Maesako M, Kinoshita A, Yamamoto T, Kon R, Sugiyama K, Setou M (2014) DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep 4:7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Therriault J, Kang MS, Ng KP, Pascoal TA, Rosa-Neto P, Gauthier S (2018) Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 10(1):80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK (2020) Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur J Pharmacol 867:172847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Shoolini University, Solan, H.P. India for providing facilities to carry out literature regarding the present work.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have significantly contributed to the development and the writing of this article.

Corresponding authors

Correspondence to Sanjib Bhattacharyya or Deepak Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, L., Sharma, A., Kumar, D. et al. Promising protein biomarkers in the early diagnosis of Alzheimer’s disease. Metab Brain Dis 37, 1727–1744 (2022). https://doi.org/10.1007/s11011-021-00847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00847-9

Keywords

Navigation