Log in

N6-methyladenosine (m6A) reader YTHDF2 accelerates endothelial cells ferroptosis in cerebrovascular atherosclerosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cerebrovascular diseases have extreme high mortality and disability rate worldwide, and endothelial cells injury-induced atherosclerosis acts as the main cause of cerebrovascular disease. Ferroptosis is a novel type of programmed cell death depending on iron-lipid peroxidation. Recent studies have revealed that ferroptosis might promote the progression of atherosclerosis (AS). Here, this research aimed to investigate the function and its profound mechanism on vascular endothelial cells in atherosclerosis. Research results revealed that YTHDF2 expression up-regulated in ox-LDL treated human umbilical vein endothelial cells (HUVECs). Gain/loss functional assays indicated that YTHDF2 overexpression inhibited HUVECs’ proliferation and accelerated the ferroptosis in ox-LDL-administered HUVECs. Meanwhile, YTHDF2 silencing promoted cell proliferation and reduced the ferroptosis in ox-LDL-administered HUVECs. Mechanistically, in silico analysis suggested that there were potential m6A-modified sites on SLC7A11 mRNA, and YTHDF2 could bind with SLC7A11 mRNA via m6A-dependent manner. YTHDF2 promoted the degradation of SLC7A11 mRNA, thereby reducing its mRNA stability. Taken together, these findings suggest that YTHDF2 accelerates endothelial cells ferroptosis in cerebrovascular atherosclerosis, hel** us enhance our comprehension on cerebrovascular disease pathological physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No research data shared.

References

  1. Caplan LR, Searls DE, Hon FK (2009) Cerebrovascular disease. Med Clin N Am 93:353–369, viii. https://doi.org/10.1016/j.mcna.2008.09.004

  2. Johansen MC, Gottesman RF (2021) Cerebrovascular disease and cognitive outcome in patients with cardiac disease. Semin Neurol 41:463–472. https://doi.org/10.1055/s-0041-1726330

    Article  PubMed  Google Scholar 

  3. Miller EC (2019) Preeclampsia and cerebrovascular disease. Hypertension 74:5–13. https://doi.org/10.1161/hypertensionaha.118.11513

    Article  CAS  PubMed  Google Scholar 

  4. Narasimhan M, Schwartz R, Halliday G (2022) Parkinsonism and cerebrovascular disease. J Neurol Sci 433:120011. https://doi.org/10.1016/j.jns.2021.120011

    Article  PubMed  Google Scholar 

  5. Osorio RC, Oh JY, Choudhary N, Lad M, Savastano L, Aghi MK (2022) Pituitary adenomas and cerebrovascular disease: a review on pathophysiology, prevalence, and treatment. Front Endocrinol (Lausanne) 13:1064216. https://doi.org/10.3389/fendo.2022.1064216

    Article  PubMed  Google Scholar 

  6. Santos M, de Sousa DA (2022) Cerebrovascular disease in pregnancy and postpartum. Curr Opin Neurol 35:31–38. https://doi.org/10.1097/wco.0000000000001005

    Article  PubMed  Google Scholar 

  7. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88. https://doi.org/10.1038/s41419-020-2298-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bano I, Horky P, Abbas SQ, Majid M, Bilal AHM, Ali F, Behl T, Hassan SSU, Bungau S (2022) Ferroptosis: a new road towards cancer management. Molecules. https://doi.org/10.3390/molecules27072129

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol 12:34. https://doi.org/10.1186/s13045-019-0720-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125. https://doi.org/10.1038/s41422-020-00441-1

    Article  CAS  PubMed  Google Scholar 

  12. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6:49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou Y, Zhang Q, Pang W, Hou L, Liang Y, Han X, Luo X, Wang P, Zhang X, Li L, Meng X (2021) YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 28:3105–3124. https://doi.org/10.1038/s41418-021-00804-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu Y, Ouyang Z, Sui X, Qi M, Li M, He Y, Cao Y, Cao Q, Lu Q, Zhou S, Liu L, Liu L, Shen B, Shu W, Huo R (2020) Oocyte competence is maintained by m(6)A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ 27:2468–2483. https://doi.org/10.1038/s41418-020-0516-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li ZX, Zheng ZQ, Yang PY, Lin L, Zhou GQ, Lv JW, Zhang LL, Chen F, Li YQ, Wu CF, Li F, Ma J, Liu N, Sun Y (2022) WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ 29:1137–1151. https://doi.org/10.1038/s41418-021-00905-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong G, Yu J, Shan G, Su L, Yu N, Yang S (2021) N6-methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1. Front Cell Dev Biol 9:731810. https://doi.org/10.3389/fcell.2021.731810

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen H, **e K, Tian Y, Wang X (2023) N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis 28:514–524. https://doi.org/10.1007/s10495-022-01808-y

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Lv D, Yan C, Su H, Zhang X, Shi Y, Ying K (2022) METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int 22:11. https://doi.org/10.1186/s12935-021-02433-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N, Wang Z, Yang Y, Liu Z, He Z, Li B, Li F, Li Z, Wang L, Zhang D, Yang L, Xu Z, Li X, Xu H (2023) N(6)-methyladenosine-modified USP13 induces pro-survival autophagy and imatinib resistance via regulating the stabilization of autophagy-related protein 5 in gastrointestinal stromal tumors. Cell Death Differ 30:544–559. https://doi.org/10.1038/s41418-022-01107-8

    Article  CAS  PubMed  Google Scholar 

  20. Ji X, Liu Z, Gao J, Bing X, He D, Liu W, Wang Y, Wei Y, Yin X, Zhang F, Han M, Lu X, Wang Z, Liu Q, **n T (2023) N(6)-methyladenosine-modified lncRNA LINREP promotes glioblastoma progression by recruiting the PTBP1/HuR complex. Cell Death Differ 30:54–68. https://doi.org/10.1038/s41418-022-01045-5

    Article  CAS  PubMed  Google Scholar 

  21. Liu HT, Zou YX, Zhu WJ, Sen L, Zhang GH, Ma RR, Guo XY, Gao P (2022) lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ 29:627–641. https://doi.org/10.1038/s41418-021-00879-9

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Li X, Ge C, Min J, Wang F (2022) The multifaceted role of ferroptosis in liver disease. Cell Death Differ 29:467–480. https://doi.org/10.1038/s41418-022-00941-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J, Ye W, Yin G, Cai W, Liu W (2022) USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia–reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ 29:1164–1175. https://doi.org/10.1038/s41418-021-00907-8

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, Hu L, Huang K, He J (2022) PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ 29:1982–1995. https://doi.org/10.1038/s41418-022-00990-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu W, Liu W, **e D, Wang Q, Xu C, Zhao H, Lv J, He F, Chen B, Yamamoto T, Koyama H, Cheng J (2022) High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev 2022:9304383. https://doi.org/10.1155/2022/9304383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bao X, Luo X, Bai X, Lv Y, Weng X, Zhang S, Leng Y, Huang J, Dai X, Wang Y, Li J, Jia H (2023) Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway. Free Radic Biol Med 201:76–88. https://doi.org/10.1016/j.freeradbiomed.2023.03.006

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Li X, Jia H, An G, Ni J (2021) The m(6)A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem 297:101058. https://doi.org/10.1016/j.jbc.2021.101058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Contributions

Jia Li, Changlin Zou, Zhiming Zhang performed the assays and wrote the main manuscript and prepared figures 1-5. Feng Xue was responsible for the funding. All authors reviewed the manuscript.

Corresponding author

Correspondence to Changlin Zou.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zou, C., Zhang, Z. et al. N6-methyladenosine (m6A) reader YTHDF2 accelerates endothelial cells ferroptosis in cerebrovascular atherosclerosis. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04858-1

Keywords

Navigation