Log in

Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt–FoxO3a–Bim signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human umbilical cord blood-derived stromal cells (hUCBDSCs) possess strong capability of supporting hematopoiesis and immune regulation, whereas some stress conditions cause reactive oxygen species (ROS) accumulation and then lead to oxidative injury and cell apoptosis. Ginsenoside Rg1 (G-Rg1) has been demonstrated to exert antioxidative and prosurvival effects in many cell types. In this study, the tert-Butyl hydroperoxide (t-BHP), an analog of hydroperoxide, was utilized to mimic the oxidative damage to hUCBDSCs. We aimed to investigate the effects of Ginsenoside Rg1 on protecting hUCBDSCs from t-BHP-induced oxidative injury and apoptosis, as well as the possible signaling pathway involved. It was shown that the treatment of hUCBDSCs with G-Rg1 markedly restored the t-BHP-induced cell viability loss, promoted the CFU-F formation, and inhibited cell apoptosis. G-Rg1 also caused a reduced production of LDH and MDA while significantly enhancing the activity of SOD. Mechanistically, G-Rg1 promoted the phosphorylation of Akt and FoxO3a and led to the cytoplasmic translocation of FoxO3a, which in turn suppressed FoxO3a-modulated expression of proapoptotic Bim and elevated the ratio of Bcl-2 to Bax. All these results suggest that G-Rg1 enhances the survival of t-BHP-induced hUCBDSCs and protects them against apoptosis at least partially through Akt–FoxO3a–Bim signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HIM:

Hematopoietic inductive microenvironment

HSCs:

Hematopoietic stem cells

G-Rg1:

Ginsenoside Rg1

t-BHP:

Tert-Butyl hydroperoxide

hUCBDSCs:

Human umbilical cord blood-derived stromal cells

BMSCs:

Bone marrow stromal cells

ROS:

Reactive oxygen species

PI3K:

Phosphoinositide-3-kinase

Akt:

Protein kinase B (PKB/Akt)

FoxO3a:

Forkhead box O3a

MDA:

Malondialdehyde

LDH:

Lactate dehydrogenase

SOD:

Superoxide dismutase

DMSO:

Dimethyl sulfoxide

CCK-8:

Cell counting kit-8

CFU-F:

Colony-forming unit of fibroblasts

7-AAD:

7-amino-actinomycin D

TUNEL:

Terminal dUTP nick end labeling

Br-dUTP:

Bromolated deoxyuridine triphosphate nucleotide

TdT:

Terminal deoxynucleotidyl transferase

PI:

Propidium iodide

DAPI:

4′, 6′-diamidino-2-phenylindole

PVDF:

Polyvinylidene difluoride

c-caspase 3:

Cleaved-caspase 3

Cyt c:

Cytochrome c

Apaf-1:

Apoptosis protease activating factor-1

References

  1. Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37

    Article  CAS  PubMed  Google Scholar 

  2. Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pineault N, Abu-Khader A (2015) Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 43:498–513

    Article  PubMed  Google Scholar 

  4. Gao L, Chen X, Zhang X, Liu Y, Kong P, Peng X, Liu L, Liu H, Zeng D (2006) Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34 + cells in vitro. Blood Cells Mol Dis 36:322–328

    Article  CAS  PubMed  Google Scholar 

  5. Liu SS, Zhang C, Zhang X, Chen XH (2014) Human umbilical cord blood-derived stromal cells: a new source of stromal cells in hematopoietic stem cell transplantation. Crit Rev Oncol Hematol 90:93–98

    Article  PubMed  Google Scholar 

  6. Liu Y, Yi L, Zhang X, Gao L, Zhang C, Chen XH (2011) Cotransplantation of human umbilical cord blood-derived stromal cells enhances hematopoietic reconstitution and engraftment in irradiated BABL/c mice. Cancer Biol Ther 11:84–94

    Article  PubMed  Google Scholar 

  7. Gao L, Chen XH, Feng YM, Zhang X, Yu SC (2010) Human umbilical cord blood-derived stromal cells: multifaceted regulators of megakaryocytopoiesis. Cell Cycle 9:1342–1353

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C, Chen XH, Zhang X, Gao L, Kong PY, Peng XG, Liang X, Gao L, Gong Y, Wang QY (2011) Human umbilical cord blood-derived stromal cells, a new resource in the suppression of acute graft-versus-host disease in haploidentical stem cell transplantation in sublethally irradiated mice. J Biol Chem 286:13723–13732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alves H, Mentink A, Le B, van Blitterswijk CA, de Boer J (2013) Effect of antioxidant supplementation on the total yield, oxidative stress levels, and multipotency of bone marrow-derived human mesenchymal stromal cells. Tissue Eng Part A 19:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Urao N, Ushio-Fukai M (2013) Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 54:26–39

    Article  CAS  PubMed  Google Scholar 

  11. Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y (2015) Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 9:23–32

    Article  PubMed  Google Scholar 

  12. Li J, Wei Q, Zuo GW, **a J, You ZM, Li CL, Chen DL (2014) Ginsenoside Rg1 induces apoptosis through inhibition of the EpoR-mediated JAK2/STAT5 signalling pathway in the TF-1/Epo human leukemia cell line. Asian Pac J Cancer Prev 15:2453–2459

    Article  PubMed  Google Scholar 

  13. Gao Y, Chu S, Li J, Li J, Zhang Z, **a C, Heng Y, Zhang M, Hu J, Wei G, Li Y, Chen N (2015) Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J Ethnopharmacol 173:231–240

    Article  CAS  PubMed  Google Scholar 

  14. Cao L, Zou Y, Zhu J, Fan X, Li J (2013) Ginsenoside Rg1 attenuates concanavalin A-induced hepatitis in mice through inhibition of cytokine secretion and lymphocyte infiltration. Mol Cell Biochem 380:203–210

    Article  CAS  PubMed  Google Scholar 

  15. Tang YL, Zhou Y, Wang YP, Wang JW, Ding JC (2015) SIRT6/NF-κB signaling axis in ginsenoside Rg1-delayed hematopoietic stem/progenitor cell senescence. Int J Clin Exp Pathol 8:5591–5596

    PubMed  PubMed Central  Google Scholar 

  16. Lu XZ, Wang JH, Wu X, Zhou L, Wang L, Zhang XW (2008) Ginsenoside Rg1 promotes bone marrow stromal cells proliferation via the activation of the estrogen receptor-mediated signaling pathway1. Acta Pharmacol Sin 29:1209–1214

    Article  CAS  PubMed  Google Scholar 

  17. Jiang GZ, Li JC (2014) Protective effects of ginsenoside Rg1 against colistin sulfate-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 34:167–172

    Article  CAS  PubMed  Google Scholar 

  18. Mao N, Cheng Y, Shi XL, Wang L, Wen J, Zhang Q, Hu QD, FAN JM (2014) Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro. Acta Pharmacol Sin 35:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang ZL, Fan Y, Liu ML (2012) Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem 365:243–250

    Article  CAS  PubMed  Google Scholar 

  20. Hu W, **g P, Wang L, Zhang Y, Yong J, Wang Y (2015) The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model. BMC Complement Altern Med 15:119–126

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu J, Gu Y, Fan W (2016) Rg1 protects rat bone marrow stem cells against hydrogen peroxide-induced cell apoptosis through the PI3K/Akt pathway. Mol Med Rep 14:406–412

    PubMed  Google Scholar 

  22. Huang Y, Wu D, Fan W (2014) Protection of ginsenoside Rg1 on chondrocyte from IL-1β-induced mitochondria-activated apoptosis through PI3K/Akt signaling. Mol Cell Biochem 392:249–257

    Article  CAS  PubMed  Google Scholar 

  23. Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN (2007) Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology 52:827–835

    Article  CAS  PubMed  Google Scholar 

  24. Peng H, Du B, Jiang H, Gao J (2016) Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway. Biochem Biophys Res Commun 469:1111–1116

    Article  CAS  PubMed  Google Scholar 

  25. Sun HP, Zhang X, Chen XH, Zhang C, Gao L, Feng YM, Peng XG, Gao L (2012) Human umbilical cord blood-derived stromal cells are superior to human umbilical cord blood-derived mesenchymal stem cells in inducing myeloid lineage differentiation in vitro. Stem Cells Dev 21:1429–1440

    Article  CAS  PubMed  Google Scholar 

  26. Liu MH, Li GH, Peng LJ, Qu SL, Zhang Y, Peng J, Luo XY, Hu HJ, Ren Z, Liu Y, Tang H, Liu LS, Tang ZH, Jiang ZS (2016) PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells. Mol Cell Biochem 414:57–66

    Article  CAS  PubMed  Google Scholar 

  27. Richardson C, Yan S, Vestal CG (2015) Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 16:2366–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang W, Song BW, Moon JY, Cha MJ, Ham O, Lee SY, Choi E, Hwang KC (2013) Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol 28:1529–1536

    CAS  PubMed  Google Scholar 

  29. Lu D, Zhu LH, Shu XM, Zhang CJ, Zhao JY, Qi RB, Wang HD, Lu DX (2015) Ginsenoside Rg1 relieves tert-Butyl hydroperoxide-induced cell impairment in mouse microglial BV2 cells. J Asian Nat Prod Res 17:930–945

    Article  CAS  PubMed  Google Scholar 

  30. Vidyashankar S, Mitra SK, Nandakumar KS (2010) Liv. 52 protects HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide. Mol Cell Biochem 333:41–48

    Article  CAS  PubMed  Google Scholar 

  31. Fu JX, Shi XF, Qin JC, Ge Y, Zhang XG (2004) Homing efficiency and hematopoietic reconstitution of bone marrow-derived stroma cells expanded by recombinant human macrophage-colony stimulating factor in vitro. Exp Hematol 32:1204–1211

    Article  CAS  Google Scholar 

  32. Marczak A, Denel-Bobrowska M, Rogalska A, Łukawska M, Oszczapowicz I (2015) Cytotoxicity and induction of apoptosis by formamidinodoxorubicins in comparison to doxorubicin in human ovarian adenocarcinoma cells. Environ Toxicol Pharmacol 39:369–383

    Article  CAS  PubMed  Google Scholar 

  33. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  34. Bresciani G, da Cruz I, González-Gallego J (2015) Manganese superoxide dismutase and oxidative stress modulation. Adv Clin Chem 68:87–130

    Article  PubMed  Google Scholar 

  35. Chen CY, Yi L, ** X, Mi MT, Zhang T, Ling WH, Yu B (2010) Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Chem-Biol Interact 183:105–112

    Article  CAS  PubMed  Google Scholar 

  36. Ashour AE, Ahmed AF, Kumar A, Zoheir KM, Aboul-Soud MA, Ahmad SF, Attia SM, Abd-Allah AR, Cheryan VT, Rishi AK (2016) Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression. Mol Cell Biochem 416:141–155

    Article  CAS  PubMed  Google Scholar 

  37. Peng CM, Ma JL, Gao X, Tian P, Li WZ, Zhang L (2013) High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a. PLoS ONE 8:e79739

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mao Z, Zheng YL, Zhang YQ, Han BP, Chen LT, Li J, Li F, Shan Q (2008) Chronic application of nonylphenol-induced apoptosis via suppression of bcl-2 transcription and up-regulation of active caspase-3 in mouse brain. Neurosci Lett 439:147–152

    Article  CAS  PubMed  Google Scholar 

  39. Hu Y, Wang S, Wang A, Lin L, Chen M, Wang Y (2015) Antioxidant and hepatoprotective effect of Penthorum chinense Pursh extract against t-BHP-induced liver damage in L02 cells. Molecules 20:6443–6453

    Article  CAS  PubMed  Google Scholar 

  40. Sionov RV, Vlahopoulos SA, Granot Z (2015) Regulation of Bim in health and disease. Oncotarget 6:23058–23134

    Article  PubMed  PubMed Central  Google Scholar 

  41. Faber AC, Ebi H, Costa C, Engelman JA (2012) Apoptosis in targeted therapy responses: the role of BIM. Adv Pharmacol 65:519–542

    Article  CAS  PubMed  Google Scholar 

  42. Chen MH, Chen SD, Lin DK (2016) Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway. Biomed Pharmacother 78:257–263

    Article  CAS  PubMed  Google Scholar 

  43. **a W, **e C, Jiang M, Hou M (2015) Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor. Mol Cell Biochem 404:11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shukla S, Rizvi F, Raisuddin S, Kakkar P (2014) FoxO proteins’ nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells. Free Radic Biol Med 76:185–199

    Article  CAS  PubMed  Google Scholar 

  45. Liu MH, Yuan C, He J, Tan TP, Wu SJ, Fu HY, Liu J, Yu S, Chen YD, Le QF, Tian W, Hu HJ, Zhang Y, Lin XL (2015) Resveratrol protects PC12 cells from high glucose-induced neurotoxicity via PI3K/Akt/FoxO3a pathway. Cell Mol Neurobiol 35:513–522

    Article  PubMed  Google Scholar 

  46. Xu J, Qian J, **e X, Lin L, Zou Y, Fu M (2012) High density lipoprotein protects mesenchymal stem cells from oxidative stress-induced apoptosis via activation of the PI3K/Akt pathway and suppression of reactive oxygen species. Int J Mol Sci 13:17104–17120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J (2012) Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 1820:453–460

    Article  CAS  PubMed  Google Scholar 

  48. Zhu G, Wang Y, Li J, Wang J (2015) Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 292:81–89

    Article  CAS  PubMed  Google Scholar 

  49. Nho RS, Hergert P (2014) FoxO3a and disease progression. World J Biol Chem 5:346–354

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang S, Zhao Y, Xu M, Yu L, Zhao Y, Chen J, Yuan Y, Zheng Q, Niu X (2013) FoxO3a modulates hypoxia stress induced oxidative stress and apoptosis in cardiac microvascular endothelial Cells. PLoS ONE 8:e80342

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo H, Yang Y, Duan J, Wu P, Jiang Q, Xu C (2013) PTEN-regulated AKT/FoxO3a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis 4:e481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant number 30973818) and the National High-tech R&D Program of China (863 Program, Grant number 2014AA022302).

Author contributions

Liu Y. and Long Y. conceived and designed the experiments; Liu Y., Chen L.B., and Chen X.B. performed the experiments; Long Y. and Wang L. analyzed the data; Liu Y. prepared the manuscript; and Wang Y.P. supervised the whole research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya** Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yi, L., Wang, L. et al. Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt–FoxO3a–Bim signaling pathway. Mol Cell Biochem 421, 75–87 (2016). https://doi.org/10.1007/s11010-016-2786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2786-y

Keywords

Navigation