Log in

HDAC7 modulates TNF-α-mediated suppression of Leydig cell steroidogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) has an inhibitory role in gonadal functions particularly in the steroidogenesis of Leydig cells. In the present study, we demonstrate that TNF-α activates histone deacetylases 7 (HDAC7), which regulates the expression of steroidogenic enzyme genes in Leydig cells. LC-540 Leydig cells were treated with TNF-α (10 ng/ml) for different time intervals. TNF-α treatment significantly suppressed histone H3 acetylation and methylation and, concomitantly, increased the total histone deacetylases activity in LC-540 Leydig cells. RT-PCR and western blot analysis revealed that HDAC7 was up-regulated in TNF-α-treated cells. Our results also demonstrated that an siRNA-mediated knockdown of HDAC7 restores the expression of steroidogenic proteins in TNF-α-treated Leydig cells. These findings provide valuable information that TNF-α-mediated suppression of steroidogenesis involves HDAC7 in Leydig cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Hales DB (2002) Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 57:3–18

    Article  CAS  PubMed  Google Scholar 

  2. Bornstein SR, Rutkowski H, Vrezas I (2004) Cytokines and steroidogenesis. Mol Cell Endocrinol 215:135–141

    Article  CAS  PubMed  Google Scholar 

  3. Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K (2004) Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 24:2593–2604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Calkins JH, Guo H, Sigel MM, Lin T (1990) Tumor necrosis factor-alpha enhances inhibitory effects of interleukin-1 beta on Leydig cell steroidogenesis. Biochem Biophys Res Commun 166:1313–1318

    Article  CAS  PubMed  Google Scholar 

  5. Suescun MO, Rival C, Theas MS, Calandra RS, Lustig L (2003) Involvement of tumor necrosis factor-alpha in the pathogenesis of autoimmune orchitis in rats. Biol Reprod 68:2114–2121

    Article  CAS  PubMed  Google Scholar 

  6. **ong Y, Hales DB (1993) The role of tumor necrosis factor-alpha in the regulation of mouse Leydig cell steroidogenesis. Endocrinology 132:2438–2444

    CAS  PubMed  Google Scholar 

  7. **ong Y, Hales DB (1997) Differential effects of tumor necrosis factor-alpha and interleukin-1 on 3 beta-hydroxysteroid dehydrogenase/delta5 → delta 4 isomerase expression in mouse Leydig cells. Endocrine 7:295–301

    Article  CAS  PubMed  Google Scholar 

  8. Soliman ML, Smith MD, Houdek HM, Rosenberger TA (2012) Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflamm 9:51

    Article  CAS  Google Scholar 

  9. Ficner R (2009) Novel structural insights into class I and II histone deacetylases. Curr Top Med Chem 9:235–240

    Article  CAS  PubMed  Google Scholar 

  10. Sripichai O, Kiefer CM, Bhanu NV, Tanno T, Noh SJ, Goh SH, Russell JE, Rognerud CL, Ou CN, Oneal PA, Meier ER, Gantt NM, Byrnes C, Lee YT, Dean A, Miller JL (2009) Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood 114:2299–2306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Aung HT, Schroder K, Himes SR, Brion K, van Zuylen W, Trieu A, Suzuki H, Hayashizaki Y, Hume DA, Sweet MJ, Ravasi T (2006) LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20(9):1315–1327

    Article  CAS  PubMed  Google Scholar 

  12. Shakespear MR, Hohenhaus DM, Kelly GM, Kamal NA, Gupta P, Labzin LI, Schroder K, Garceau V, Barbero S, Iyer A, Hume DA, Reid RC, Irvine KM, Fairlie DP, Sweet MJ (2013) Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 288(35):25362–25374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150(7):829–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kong Y, Jung M, Wang K, Grindrod S, Velena A, Lee SA, Dakshanamurthy S, Yang Y, Miessau M, Zheng C, Dritschilo A, Brown ML (2011) Histone deacetylase cytoplasmic trap** by a novel fluorescent HDAC inhibitor. Mol Cancer Ther 10(9):1591–1599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279(40):41966–41974

    Article  CAS  PubMed  Google Scholar 

  16. Muralidhar SA, Ramakrishnan V, Kalra IS, Li W, Pace BS (2011) Histone deacetylase 9 activates gamma-globin gene expression in primary erythroid cells. J Biol Chem 286:2343–2353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Diemer T, Hales DB, Weidner W (2003) Immune-endocrine interactions and Leydig cell function: the role of cytokines. Andrologia 35:55–63

    Article  CAS  PubMed  Google Scholar 

  18. Diemer T, Allen JA, Hales KH, Hales DB (2003) Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144:2882–2891

    Article  CAS  PubMed  Google Scholar 

  19. Calandra T, Baumgartner JD, Grau GE, Wu MM, Lambert PH, Schellekens J, Verhoef J, Glauser MP (1990) Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis 161:982–987

    Article  CAS  PubMed  Google Scholar 

  20. Cannon JG, Tompkins RG, Gelfand JA, Michie HR, Stanford GG, van der Meer JW, Endres S, Lonnemann G, Corsetti J, Chernow B et al (1990) Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 161:79–84

    Article  CAS  PubMed  Google Scholar 

  21. Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17:975–978

    Article  CAS  PubMed  Google Scholar 

  22. Vogel AV, Peake GT, Rada RT (1985) Pituitary-testicular axis dysfunction in burned men. J Clin Endocrinol Metab 60:658–665

    Article  CAS  PubMed  Google Scholar 

  23. Woolf PD, Hamill RW, McDonald JV, Lee LA, Kelly M (1985) Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab 60:444–450

    Article  CAS  PubMed  Google Scholar 

  24. Mealy K, Robinson B, Millette CF, Majzoub J, Wilmore DW (1990) The testicular effects of tumor necrosis factor. Ann Surg 211:470–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. van der Poll T, Romijn JA, Endert E, Sauerwein HP (1993) Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism 42:303–307

    Article  PubMed  Google Scholar 

  26. Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  CAS  PubMed  Google Scholar 

  27. Kim JS, Shukla SD (2006) Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 41(2):126–132

    Article  CAS  PubMed  Google Scholar 

  28. Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E (2005) Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem 280:13762–13770

    Article  CAS  PubMed  Google Scholar 

  29. Dequiedt F, Van Lint J, Lecomte E, Van Duppen V, Seufferlein T, Vandenheede JR, Wattiez R, Kettmann R (2005) Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201:793–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S (2001) Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 276:47496–47507

    Article  CAS  PubMed  Google Scholar 

  31. Martin M, Kettmann R, Dequiedt F (2007) Class IIa histone deacetylases: regulating the regulators. Oncogene 26:5450–5467

    Article  CAS  PubMed  Google Scholar 

  32. Parra M, Mahmoudi T, Verdin E (2007) Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev 21:638–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Indian Council of Medical Research (ICMR), New Delhi, India, for the financial assistance. The infrastructure provided by DST-FIST is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chidambaram Prahalathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

LC-540 cell viability is affected by TNF-α in a dose- (A) and time- (B) dependent manner. Values represent mean ± SD for three independent experiments (n = 3). Values are statistically significant at ***P < 0.001, **P < 0.01, and *P < 0.05. Supplementary material 1 (TIFF 153 kb)

Supplementary Fig. 2

Effect of TNF-α on histone H3 acetylation and methylation in acid-extracted histones of LC-540 Leydig cells. LC-540 Leydig cells were treated with or without TNF-α (10 ng/ml) for the indicated time intervals. The nuclear histones were extracted and used for the analysis. Total histone H3 levels were utilized as an internal control. Values represent mean ± SD for three independent experiments (n = 3). Values are statistically significant at ***P < 0.001, **P < 0.01, and *P < 0.05. Supplementary material 2 (TIFF 163 kb)

Supplementary Fig. 3

Effect of HDAC7 inhibition on Leydig cell steroidogenesis. LC-540 Leydig cells were pretreated with sodium butyrate (10 mM) for 60 min and then treated with or without TNF-α (10 ng/ml) and used for the analysis. A) Representative mRNA expression to show HDAC7 inhibition in LC-540 Leydig cells. B) Effect of HDAC7 inhibition on steroidogenic genes in LC-540 Leydig cells treated with or without TNF-α. β-actin levels were utilized as an internal control. Values represent mean ± SD for three independent experiments (n = 3). Comparisons are made between a—(control versus TNF-α treated), b—(control versus sodium butyrate treated), and c—(TNF-α versus sodium butyrate + TNF-α treated). Values are statistically significant at ***P < 0.001, **P < 0.01, ns non-significant. Supplementary material 3 (TIFF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadasivam, M., Ramatchandirin, B., Balakrishnan, S. et al. HDAC7 modulates TNF-α-mediated suppression of Leydig cell steroidogenesis. Mol Cell Biochem 406, 83–90 (2015). https://doi.org/10.1007/s11010-015-2426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2426-y

Keywords

Navigation