Log in

Baicalein suppresses the viability of MG-63 osteosarcoma cells through inhibiting c-MYC expression via Wnt signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The major reason responsible for the poor prognosis of osteosarcoma is the malignant proliferation of osteosarcoma cells. The activated Wnt/β-catenin signaling induces c-MYC gene transcription and results in osteocytes’ carcinomatous change, which contributes to osteosarcoma development, so c-MYC gene is one of the therapeutic targets. The role of multiple botanical extracts in the expression of β-catenin’s target gene c-MYC in osteosarcoma MG-63 cells was tested by cellomics high content screening. Baicalein was identified as the most effective one which can inhibit the proliferation and promote the apoptosis of MG-63 cells in a dose-dependent manner by cell counting kit-8 test and fluorescence-activated cell sorting, respectively. This process was associated with the decreased levels of β-catenin and its target gene c-MYC, identified by q-PCR and Western blotting, respectively. When MG-63 cells were treated with both baicalein and JNK inhibitor SP600125, the apoptosis and expression of c-MYC were not significantly decreased. After the construct pcDNA3.1-BANCR (BRAF-regulated lncRNA 1) was transfected into MG-63 cells, RT-PCR, Western blotting and CCK-8 assay showed that BANCR was positively correlated with baicalein. These results indicated that baicalein inhibited osteosarcoma cell proliferation and promoted apoptosis by targeting c-MYC gene through Wnt signaling, in which JNK and BANCR were also involved as well as β-catenin, suggesting a new potential mechanism for us to better understand the inhibiting effect of baicalein on osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raymond AK, Jaffe N (2009) Osteosarcoma multidisciplinary approach to the management from the pathologist’s perspective. Cancer Treat Res 152:63–84. doi:10.1007/978-1-4419-0284-9_4

    PubMed  Google Scholar 

  2. Chou AJ, Geller DS, Gorlick R (2008) Therapy for osteosarcoma: where do we go from here? Paediatr Drugs 10:315–327

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Luetke A, Meyers PA, Lewis I, Juergens H (2014) Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev 40:523–532. doi:10.1016/j.ctrv.2013.11.006

    Article  PubMed  Google Scholar 

  5. Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31:2670–2684. doi:10.1038/emboj.2012.146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Taketo MM (2004) Shutting down Wnt signal-activated cancer. Nat Genet 36:320–322. doi:10.1038/ng0404-320

    Article  CAS  PubMed  Google Scholar 

  7. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. doi:10.1016/j.devcel.2009.06.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Smeland S, Bruland OS, Hjorth L, Brosjo O, Bjerkehagen B, Osterlundh G, Jakobson A, Hall KS, Monge OR, Bjork O, Alvegaard TA (2011) Results of the Scandinavian Sarcoma Group XIV protocol for classical osteosarcoma: 63 patients with a minimum follow-up of 4 years. Acta Orthop 82:211–216. doi:10.3109/17453674.2011.566141

    Article  PubMed Central  PubMed  Google Scholar 

  9. Esumi T, Makado G, Zhai H, Shimizu Y, Mitsumoto Y, Fukuyama Y (2004) Efficient synthesis and structure-activity relationship of honokiol, a neurotrophic biphenyl-type neolignan. Bioorg Med Chem Lett 14:2621–2625. doi:10.1016/j.bmcl.2004.02.067

    Article  CAS  PubMed  Google Scholar 

  10. Singh T, Katiyar SK (2013) Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE(2)-mediated activation of beta-catenin signaling. PLoS One 8:e60749. doi:10.1371/journal.pone.0060749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N (2014) Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 9:e100893

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625

    Article  CAS  PubMed  Google Scholar 

  13. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13:11–26. doi:10.1038/nrc3419

    Article  CAS  PubMed  Google Scholar 

  14. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 12:1244–1252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063

    Article  CAS  PubMed  Google Scholar 

  16. You L, Kim J, He B, Xu Z, McCormick F, Jablons DM (2006) Wnt-1 signal as a potential cancer therapeutic target. Drug News Perspect 19:27–31. doi:10.1358/dnp.2005.19.1.965871

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J, Wang CY (2001) Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 152:87–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chae JI, Jeon YJ, Shim JH (2013) Downregulation of Sp1 is involved in honokiol-induced cell cycle arrest and apoptosis in human malignant pleural mesothelioma cells. Oncol Rep 29:2318–2324. doi:10.3892/or.2013.2353

    CAS  PubMed  Google Scholar 

  19. Jeong JJ, Lee JH, Chang KC, Kim HJ (2012) Honokiol exerts an anticancer effect in T98G human glioblastoma cells through the induction of apoptosis and the regulation of adhesion molecules. Int J Oncol 41:1358–1364. doi:10.3892/ijo.2012.1582

    CAS  PubMed  Google Scholar 

  20. Hahm ER, Arlotti JA, Marynowski SW, Singh SV (2008) Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction. Clin Cancer Res 14:1248–1257. doi:10.1158/1078-0432.CCR-07-1926

    Article  CAS  PubMed  Google Scholar 

  21. Hou W, Chen L, Yang G, Zhou H, Jiang Q, Zhong Z, Hu J, Chen X, Wang X, Yuan Y, Tang M, Wen J, Wei Y (2008) Synergistic antitumor effects of liposomal honokiol combined with adriamycin in breast cancer models. Phytother Res 22:1125–1132. doi:10.1002/ptr.2472

    Article  CAS  PubMed  Google Scholar 

  22. Kaldis P, Pagano M (2009) Wnt signaling in mitosis. Dev Cell 17:749–750. doi:10.1016/j.devcel.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3:36–41

    Article  CAS  PubMed  Google Scholar 

  24. Derksen PW, T** E, Meijer HP, Klok MD, Mac Gillavry HD, van Oers MH, Lokhorst HM, Bloem AC, Clevers H, Nusse R (2004) Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 101:6122–6127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ (2010) Wnt/β-Catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30:1868–1879

    Article  PubMed Central  PubMed  Google Scholar 

  26. Li Y, Bavarva JH, Wang Z, Guo J, Qian C, Thibodeau SN, Golemis EA, Liu W (2011) HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 30:2633–2643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y (2013) Long non-coding RNA: a new player in cancer. J Hematol Oncol 6:1–7

    Article  Google Scholar 

  28. J-p Li, L-h Liu, Li J, Chen Y, X-w Jiang, Y-r Ouyang, Y-q Liu, Zhong H, Li H, **ao T (2013) Microarray expression profile of long noncoding RNAs in human osteosarcoma. Biochem Biophys Res Commun 433:200–206

    Article  Google Scholar 

  29. Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, Khavari PA (2012) BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res 22:1006–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sun M, Liu X-H, Wang K-M, F-q Nie, Kong R, J-s Yang, **a R, Xu T-P, ** F-Y, Liu Z-J (2014) Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial–mesenchymal transition. Mol Cancer 13:68

    Article  PubMed Central  PubMed  Google Scholar 

  31. Jiang W, Zhang D, Xu B, Wu Z, Liu S, Zhang L, Tian Y, Han X, Tian D (2015) Long non-coding RNA BANCR promotes proliferation and migration of lung carcinoma via MAPK pathways. Biomed Pharmacother 69:90–95

    Article  CAS  PubMed  Google Scholar 

  32. **g L, Anning L (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42

    Article  Google Scholar 

  33. Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, Obrosova IG (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation. Exp Neurol 230:106–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Q-m Zhou, Wang S, Zhang H, Y-y Lu, X-f Wang, Motoo Y, S-b Su (2009) The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol Sin 30:1648–1658

    Article  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, N., Zhang, Z. Baicalein suppresses the viability of MG-63 osteosarcoma cells through inhibiting c-MYC expression via Wnt signaling pathway. Mol Cell Biochem 405, 187–196 (2015). https://doi.org/10.1007/s11010-015-2410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2410-6

Keywords

Navigation