Log in

Thermal Stability of Fe82Nb2B14REM2 Amorphous Alloys

  • Published:
Materials Science Aims and scope

We analyze the thermal stability and kinetic parameters of crystallization of Fe82Nb2B14REM2 (REM = Y, Gd, Tb, or Dy) amorphous metallic alloys by the method of differential scanning calorimetry. It is shown that the alloys based on iron crystallize in two stages. We compute the activation energy of both stages of crystallization of amorphous alloys according to the Kissinger, Ozawa, and Augis–Bennett models. The procedure of do** of the Fe84Nb2B14 alloy with rare-earth metals leads to an increase in temperature, in the activation energy of crystallization, and in the frequency factor. The decrease in the crystallization rate constant of alloys caused by do** with rare-earth metals reveals their resistance to temperature treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. V. K. Nosenko, V. V. Maslov, V. V. Kirilchuk, and A. P. Kochkubey, “Some industrial applications of amorphous and nanocrystalline alloys,” J. Phys. Conf. Ser., 98, 072016 (2008).

    Article  Google Scholar 

  2. N. I. Repnikov, S. А. Gridnev, А. V. Biryukov, and Yu. P. Lebedev, “Kinetics of crystallization of an amorphous material Bi1.8Pb0.3Sr2Ca2Cu3.7K0.3Oz ,” Kondensir. Sredy Mezhfazn. Granits., 10, No. 4, 266–273 (2008).

    Google Scholar 

  3. А. А. Shcheretskii, V. L. Lakhnenko, V. S. Shumikhin, and V. A. Solov’eva, “Specific features of the transition of amorphous alloys based on aluminum into the crystalline state under thermal and mechanical actions,” Élektron. Mikroskop. Prochn. Mater., 17, 57–65 (2010).

    Google Scholar 

  4. A. Chrobak, D. Chrobak, G. Haneczok, P. Kwapuliński, Z. Kwolek, and M. Karolus, “Influence of Nb on the first stage of crystallization in Fe86−xNbxB14 amorphous alloys,” Mater. Sci. Eng. A, 382, 401–406 (2004).

    Article  Google Scholar 

  5. M. Karolus, P. Kwapuliński, D. Chrobak, G. Haneczok, and A. Chrobak, “Crystallization in Fe76X2B22 (X = Cr, Zr, Nb) amorphous alloys,” J. Mater. Proc. Tech., 162–163, 203–208 (2005).

    Article  Google Scholar 

  6. О. Hertsyk, М. Kovbuz, L. Bednarska, N. Kavchak, and B. Kotur, “Electrochemical identification of the mechanism of oxidation of Al in Al87.0Y5.0Ni8.0 amorphous alloy,” Pratsi NTSh, Khem. Biokhem., XVIII, 87–97 (2007).

    Google Scholar 

  7. J. Torrens-Serra, S. Roth, J. Rodriguez–Viejo, and M. T. Clavaguera–Mora, “Effect of Nb in the nanocrystallization and magnetic properties of FeNbBCu amorphous alloys,” J. Non-Cryst. Solids, 354, 5110–5112 (2008).

    Article  CAS  Google Scholar 

  8. S. Ahmadi, H. R. Shahverdi, M. Afsari, and A. Abdollah-zadeh, “Nanocrystallization of Fe36Cr12Mo10 phase in Fe55−xCr18Mo7B16C4Nbx (x = 0; 3; 4) amorphous alloys,” J. Non-Cryst. Solids., 365, 47–52 (2013).

    Article  CAS  Google Scholar 

  9. Y. R. Zhang and R. V. Ramanujan, “The effect of niobium alloying additions on the crystallization of a Fe–Si–B–Nb alloy,” J. Alloys Comp., 403, 197–205 (2005).

    Article  CAS  Google Scholar 

  10. P. Ramasamy, M. Stoica, A. H. Taghvaei, K. G. Prashanth, R. Kumar, and J. Eckert, “Kinetic analysis of the nonisothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses,” J. Appl. Phys., 119, 073908 (2016).

    Article  Google Scholar 

  11. S. H. Al-Heniti, “Kinetic study of nonisothermal crystallization in Fe78Si9B13 metallic glass,” J. Alloys Comp., 48, 177–184 (2009).

    Article  Google Scholar 

  12. L. H. Kong, Y. L. Gao, T. T. Song, G. Wang, and Q. J. Zhai, “Nonisothermal crystallization kinetics of FeZrB amorphous alloy,” Thermochim. Acta, 522, 166–172 (2011).

    Article  CAS  Google Scholar 

  13. J. Torrens-Serra, J. Rodriguez-Viejo, and M. T. Clavaguera-Mora, “Influence of composition in the crystallization process of Fe75−xNb10B15+x metallic glasses,” J. Non-Cryst. Solids, 353, No. 8-10, 842–844 (2007).

    Article  CAS  Google Scholar 

  14. J. Torrens-Serra, P. Bruna, J. Rodríguez-Viejo, T. Pradell, and M. T. Clavaguera-Mora, “Study of crystallization process of Fe65Nb10B25 and Fe70Nb10B20 glassy metals,” Rev. Adv. Mater. Sci., 18, 464–468 (2008).

    CAS  Google Scholar 

  15. A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, B. Kotur, A. Bajorek, O. Zivotsky, and A. Hendrych, “Effect of rare-earth additions on magnetic properties of Fe82Nb2B14RE2 (RE = Y, Gd, Tb and Dy) amorphous alloys,” Mater. Chem. Phys., 130, 603–608 (2011).

    Article  CAS  Google Scholar 

  16. N. F. Shkodich, S. G. Vadchenko, A. A. Nepapushev, D. Yu. Kovalev, and A. S. Mukasyan, “Crystallization of amorphous Cu50Ti50 alloy prepared by high-energy ball milling,” J. Alloys Comp., 741, 575–579 (2018).

    Article  CAS  Google Scholar 

  17. N. Bayri, V. S. Kolat, T. Izgi, S. Atalay, H. Gencer, and P. Sovak, “Crystallisation kinetics of Co75−xMxSi15B10 (M = Fe, Mn, Cr and x = 0, 5) amorphous alloys,” Acta Phys. Pol. A, 129, No. 1, 84–87 (2016).

    Article  CAS  Google Scholar 

  18. A. Musiał, Z. Śniadecki, and B. Idzikowski, “Thermal stability and glass forming ability of amorphous Hf2Co11B alloy,” Mater. Des., 114, No. 15, 404–409 (2017).

    Article  Google Scholar 

  19. M. H. Kh. Feizabada, Gh. R. Khayatia, Sh. Sharafia, and M. Ranjbar, “Improvement of soft magnetic properties of Fe0.7Nb0.1Zr0.1Ti0.1 amorphous alloy: A kinetic study approach,” J. Non-Cryst. Solids, 493, 11–19 (2018).

    Article  Google Scholar 

  20. A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, M. Karolus, and B. Kotur, “Influence of rare-earth elements on crystallization of Fe82Nb2B14RE2 (RE = Y, Gd, Tb, and Dy) amorphous alloys,” J. Non-Cryst. Solids, 357, 4–9 (2011).

    Article  CAS  Google Scholar 

  21. D. M. Minić, A. Gavrilović, P. Angerer, D. G. Minić, and A. Maričić, “Thermal stability and crystallization of Fe89.8Ni1.5Si5.2B3C0.5 amorphous alloy,” J. Alloys Comp., 482, 502–507 (2009). 22. A. Frączyk, “The activation energy of primary crystallization of Fe95Si5 metallic glass,” Tech. Soc., 14, No. 1, 93–100 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-O. М. Danylyak.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 55, No. 6, pp. 131–138, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danylyak, MO.М., Boichyshyn, L.М. Thermal Stability of Fe82Nb2B14REM2 Amorphous Alloys. Mater Sci 55, 921–929 (2020). https://doi.org/10.1007/s11003-020-00388-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-020-00388-z

Keywords

Navigation