Log in

Inhibitory Effect of β-Casein on the Amyloid Fibril Formation of Aβ1–40 Associated with Alzheimer’s Disease

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is associated with the fibril formation of β-amyloid peptide in extracellular plaque. β-Casein is a milk protein that has shown a remarkable ability to stabilize proteins by inhibiting their protein aggregation and precipitation. The aim of this study was to test in vitro the ability of β-casein to bind the Aβ1–40, change the structure and inhibit the formation of amyloid fibrils in Aβ1–40. Results from the ThT binding assay indicated that incubation of Aβ1–40 with β-casein retarded amyloid fibril formation of Aβ1–40 in a concentration dependent manner such that at a ratio of 1:1 (w:w) led to a significant reduction in the amount of fluorescent intensity. The results from transmission electron microscopy (TEM) also showed that β-casein significantly reduced the number and size of the Aβ1–40 fibrils, suggesting that the chaperone bound to the Aβ1–40 fibrils and/or interacted with the fibrils in some way. ANS results also showed that β-casein significantly decreased the exposed hydrophobic surface in Aβ1–40. Following an ANS binding assay, CD spectroscopy results also showed that incubation of Aβ1–40 resulted in a structural transition to a β-sheet. In the presence of β-casein, however, α-helical conformation was observed which indicated stabilization of the protein. These results reveal the highly efficacious chaperone action of β-casein against amyloid fibril formation of Aβ1–40. These results suggest that in vitro, β-casein binds to the Aβ1–40 fibrils, alters the Aβ1–40 structure and prevents amyloid fibril formation. This approach may result in the identification of a chaperone mechanism for the treatment of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bellesia G, Shea JE (2009) Effect of beta sheet propensity on peptide aggregation. J Chem Phys 130:145103

    Article  PubMed  Google Scholar 

  • Berchtold NC, Cotman CW (1998) Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 19(3):173–189

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya J, Santhoshkumar P, Sharma KK (2003) A peptide sequence—YSGVCHTDLHAWHGDWPLPVK[40–60]—in yeast alcohol dehydrogenase prevents the aggregation of denatured substrate proteins. Biochem Biophys Res Commun 307:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bourhim M, Kruzel M, Srikrishnan T, Nicotera T (2007) Linear quantitation of Aβ aggregation using Thioflavin T: reduction in fibril formation by colostrinin. J Neurosci Methods 160:264–268

    Article  CAS  PubMed  Google Scholar 

  • Cardamone M, Puri NK (1993) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J 282:589–593

    Article  Google Scholar 

  • Carrotta R, Canale C, Diaspro A, Trapani A, San Biagio PL, Bulone D (2012) Inhibiting effect of αs1-casein on Aβ1–40 fibrillogenesis. Biochim Biophys Acta 1820:124–132

    Article  CAS  PubMed  Google Scholar 

  • Cassiano MM, AreÃas JAG (2001) Study of bovine β-casein at water/lipid interface by molecular modeling. J Molec Struct 539:279–288

    Article  CAS  Google Scholar 

  • Chaney MO, Webster S, Kuo Y, Roher A (1998) Molecular modelling of the AL 42 peptide from Alzheimer’s disease. Protein Eng 11:761–767

    Article  CAS  PubMed  Google Scholar 

  • Danielsson J, Jarvet J, Damberg P, Graslund A (2002) Translational diffusion measured by PFG-NMRon full length and fragments of the Alzheimer Ab(1-40) peptide. Determination of hydrodynamic radii of random coil peptides of varying length. Magn Reson Chem 40:S89–S97

    Article  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM (2001) The structure basis of protein folding and its links with human disease. Phil Trans R Soc Lond B 356:133–145

    Article  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK et al (2004) Nomenclature of the proteins of cows’ milk—sixth revision. J Dairy Sci 87(6):1641–1674

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Tagliavini F, Bugiani F, Salmona M (1996) Amyloid in Alzheimer’s disease and prion-related encephalopathies: studies with synthetic peptides. Prog Neurobiol 49:287–315

    Article  CAS  PubMed  Google Scholar 

  • Gasymov OK, Glasgow BJ (2007) ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta 1774:403–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldgaber D, Schwarzman A, Bhasin R, Gregori L, Schemechel D, Saunders A et al (1992) Sequestration of Amyloid β-Peptide. Ann N Y Acad Sci 695:139–143

    Article  Google Scholar 

  • Guha S, Manna TK, Das KP, Bhattacharyya B (1998) Chaperone-like activity of tubulin. J Biol Chem 273:30077–30080

    Article  CAS  PubMed  Google Scholar 

  • Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Bieger SC, Brühl B, Tienari PJ, Ida N, Allsop D et al (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat Med 3(9):1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Husband FA, Wilde PJ, Mackie AR, Garrood MJ (1997) A comparison of the functional and interfacial properties of β-casein and dephosphorylated β-casein. Colloid Interface Sci 195:77–85

    Article  CAS  Google Scholar 

  • Jarrett JT, Berger EP, LansburyP T Jr (1993) The C-terminus of the beta protein is critical in amyloidogenesis. Ann NY Acad Sci 695(14):4–148

    Google Scholar 

  • Kayed R, Head E (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesi. Science 300(5618):486–489

    Article  CAS  PubMed  Google Scholar 

  • Kelly JW (2000) Mechanisms of amyloidogenesis. Nat Struct Biol 2000(7):824–826

    Article  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16(3):659–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA (1996) Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Nat Acad Sci 93:1125–1129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manna T, Sarkar T, Poddar A, Roychowdhury M, Das KP, Bhattacharyya B (2001) Chaperone-like activity of tubulin. binding and reactivation of unfolded substrate enzymes. J Biol Chem 276(43):39742–39747

    Article  CAS  PubMed  Google Scholar 

  • Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1998) 1-Anilino-8-Naphtalene Sulfonate as a protein conformational tightening agent. Biopolymers 49:451–458

    Article  Google Scholar 

  • Muchowski PJ (2002) Protein misfolding, amyloid formation and neurodegeneration: a critical role for molecular chaperones? Neuron 35:9–12

    Article  CAS  PubMed  Google Scholar 

  • Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  CAS  PubMed  Google Scholar 

  • Nichols MR, Moss MA, Reed DK, Lin WL, Mukhopadhyay R, Hoh JH et al (2002) Growth of β-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127

    Article  CAS  PubMed  Google Scholar 

  • Rekas A, Adda CG, Andrew Aquilina J, Barnham KJ, Sunde M, Galatis D, Williamson NA et al (2004) Interaction of the molecular chaperone aB-crystallin with a-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340:1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Schein CH (1990) Solubility as a function of protein structure and solvent components. Nat Biotechnol 8:308–317

    Article  CAS  Google Scholar 

  • Seilheimer B, Bohrmann B, Bondole L, Muller F, Stuber D, Dobeli H (1997) The toxicity of the Alzheimer’s L-amyoid peptide correlates with a distinct eber morphology. J Struct Biol 119:59–71

    Article  CAS  PubMed  Google Scholar 

  • Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30

    Article  CAS  PubMed  Google Scholar 

  • Shin RW, Ogino K (1997) Amyloid b-protein Aβ1–40 but not Aβ1–42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 1:8187–8193

    Google Scholar 

  • Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45(3):373–379

    CAS  PubMed  Google Scholar 

  • Stege GJJ, Renkawek K, Overkamp PSG, Verschuure P, van Rijk AF, Reijnen-Aalbers A et al (1999) The molecular chaperone αB-crystallin enhances amyloid β neurotoxicity. Biochem Biophys Res Commun 262:152–156

    Article  CAS  PubMed  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Klimov DK (2009) Interpeptide interactions induce helix to strand structural transition in Abeta peptides. Proteins 77(1):1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tycko R (2000) Solid-state NMR as a probe of amyloid fibril structure. Curr Opin Chem Biol 4:500–506

    Article  CAS  PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Wetzel R (2002) Ideas of order for amyloid fibril structure. Structure 8:1031–1036

    Article  Google Scholar 

  • Xu S (2007) Aggregation drives “misfolding” in amyloid fiber formation. Amyloid 14:1119–1131

    Article  Google Scholar 

  • Zhang X, Fu X, Zhang H, Liu C, Jiao W, Chang Z (2005) Chaperone-like activity of β-casein. Int J Biochem Cell Biol 37:1232–1240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article does not contain any studies with human and animal subjects performed by any of the authors. All authors (Ghahghaei A, Shahraki S) declare that they have no conflict of interest. The authors are thankful to the university of Sistan and Baluchestan for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Ghahghaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahghaei, A., Shahraki, S. Inhibitory Effect of β-Casein on the Amyloid Fibril Formation of Aβ1–40 Associated with Alzheimer’s Disease. Int J Pept Res Ther 22, 23–29 (2016). https://doi.org/10.1007/s10989-015-9482-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9482-8

Keywords

Navigation