Log in

Identification of geophysically diverse locations that may facilitate species’ persistence and adaptation to climate change in the southwestern United States

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Conservation of geophysical diversity has been proposed as a strategy for conserving species diversity and facilitating adaptive capacity of species in the face of changing climate. Existing protected areas may not correspond to the most geophysically diverse places because they have typically not been selected on this basis.

Objectives

My objectives were to characterize geophysical diversity in the southwestern United States, assess the sensitivity of my results to methodological choices, and assess the degree to which the existing protected areas network in this region captures geophysically diverse places.

Methods

I classified the region into geophysically distinct units (land facets) on the basis of topographic and edaphic variables. I calculated land facet diversity on the basis of multiple classification methods, thematic resolutions, and spatial scales (i.e., spatial grain and neighborhood size), assessed the sensitivity of land-facet diversity estimates to these methods, and integrated the results to provide a multi-scaled estimate of geophysical diversity. I used gap analysis to assess the proportion of lands with high land-facet diversity that is protected.

Results

Land facet diversity estimates were more sensitive to spatial scale than to methods, but results based on different methods or spatial scales typically were highly correlated. Gaps in the protected areas network include geophysically diverse lands in the Central Basin and Range, Chihuahuan Desert, and Wasatch and Uinta Mountains.

Conclusion

The analytical approach and results from this study can provide perspectives and guidance for identifying and prioritizing locations that may facilitate species’ capacity to adapt to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16(3):476–487

  • Anderson MG, Ferree CE (2010) Conserving the stage: climate change and the geophysical underpinnings of species diversity. PLoS One 5(7):e11554

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson MG, Clark M, Sheldon AO (2014) Estimating climate resilience for conservation across geophysical settings. Conserv Biol 28(4):959–970

    Article  PubMed Central  PubMed  Google Scholar 

  • Aycrigg JL, Davidson A, Svancara LK, Gergely KJ, McKerrow A, Scott JM (2013) Representation of ecological systems within the protected areas network of the continental United States. PloS One 8(1):e54689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beier P, Brost B (2010) Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv Biol 24(3):701–710

    Article  PubMed  Google Scholar 

  • Belbin L (1993) Environmental representativeness—regional partitioning and reserve selection. Biol Conserv 66(3):223–230

    Article  Google Scholar 

  • Brost BM, Beier P (2012) Use of land facets to design linkages for climate change. Ecol Appl 22(1):87–103

    Article  PubMed  Google Scholar 

  • Buffo J, Fritschen LJ, Murphy JL (1972) Direct solar radiation on various slopes from 0 to 60 degrees north latitude. USDA Forest Service Research Paper, PNW-142. Portland, OR

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance dispersal in plant populations. Am J Bot 87(9):1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Capotorti G, Guida D, Siervo V, Smiraglia D, Blasi C (2012) Ecological classification of land and conservation of biodiversity at the national level: the case of Italy. Biol Conserv 147(1):174–183

    Article  Google Scholar 

  • Carlson B, Wang D, Capen D, Thompson E (2004) An evaluation of GIS-derived landscape diversity units to guide landscape-level map** of natural communities. J Nat Conserv 12(1):15–23

    Article  Google Scholar 

  • Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Webb T, Wyckoff P (1998) Reid’s Paradox of rapid plant migration: dispersal theory and interpretation of paleoecological records. Bioscience 48(1):13–24

  • Coblentz DD, Riitters KH (2004) Topographic controls on the regional-scale biodiversity of the south-western USA. J Biogeogr 31(7):1125–1138

    Article  Google Scholar 

  • Davis EB, Koo MS, Conroy C, Patton JL, Moritz C (2008) The California Hotspots Project: identifying regions of rapid diversification of mammals. Mol Ecol 17(1):120–138

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Goodchild MF, Chen X (2009) Using NDVI to define thermal south in several mountainous landscapes of California. Comput Geosci 35:327–336

    Article  Google Scholar 

  • Dickson BG, Zachmann LJ, Albano CM (2014) Systematic identification of potential conservation priority areas on roadless Bureau of Land Management lands in the western United States. Biol Conserv 178:117–127

    Article  Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17(2):1022–1035

    Article  Google Scholar 

  • Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden AZ, Schwartz MK (2013) The climate velocity of the contiguous United States during the 20th century. Glob Chang Biol 19(1):241–251

  • EPA (2013) Level III Ecoregions of the Conterminous United States. Corvallis, OR

  • Faith DP, Walker PA (1996) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodivers Conserv 5:399–415

    Article  Google Scholar 

  • Fine PVA, Daly DC, Munoz GV, Mesones I, Cameron KM (2005) The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59(7):1464–1478

    PubMed  Google Scholar 

  • Gesch D, Oimoen MS, Greenlee S, Nelson C, Steuck M, Tyler D (2002) The national elevation dataset. Photogram Eng Remote Sens 68:5–32

    Google Scholar 

  • Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modeling and spatial prediction of soil attributes. Int J Geogr Inf Syst 9(4):421–432

    Article  Google Scholar 

  • Grantham HS, Pressey RL, Wells JA, Beattie AJ (2010) Effectiveness of biodiversity surrogates for conservation planning: different measures of effectiveness generate a kaleidoscope of variation. PLoS One 5(7):e11430

    Article  PubMed Central  PubMed  Google Scholar 

  • Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333

    Article  Google Scholar 

  • Hermoso V, Januchowski-Hartley SR, Pressey RL (2013) When the suit does not fit biodiversity: loose surrogates compromise the achievement of conservation goals. Biol Conserv 159:197–205

    Article  Google Scholar 

  • Holden ZA, Jolly MW (2011) Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. For Ecol Manage 262:2133–2141

    Article  Google Scholar 

  • Hunter ML, Jacobson GL, Webb T (1988) Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv Biol 2(4):375–385

    Article  Google Scholar 

  • Jansson R (2003) Global patterns in endemism explained by past climatic change. Proc R Soc B-Biol Sci 270(1515):583–590

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical map**. Int Yearb Cartogr 7:56–59

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kartesz J, Farstad A (1999) Multi-scale analysis of endemism of vascular plant species. In: Ricketts TH, Dinerstein E, Olson DM, Loucks C (eds) Terrestrial ecoregions of North America: a conservation assessment. Island Press, Washington, D.C., pp 51–55

    Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84(8):2007–2020

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(7276):1052 U111

    Article  CAS  PubMed  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13(4):603–606

    Article  Google Scholar 

  • Miller KR (1982) Parks and protected areas: considerations for the future. Ambio 11(5):315–317

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Murphy DD, Weiss SB (1992) Effects of climate change on biological diversity in Western North America: species losses and mechanisms. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, Castleton

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Noss RF, Dobson AP, Baldwin R, Beier P, Davis CR, Dellasalla DA, Francis J, Locke H, Nowak K, Lopez R, Reining C, Trombulak SC, Tabor G (2012) Bolder thinking for conservation. Conserv Biol 26(1):1–4

  • Ordonez A, Williams JW (2013) Climatic and biotic velocities for woody taxa distributions over the last 16,000 years in eastern North America. Ecol Lett 16:773–781

    Article  PubMed  Google Scholar 

  • Pressey RL (1994) Ad Hoc reservations: forward or backward steps in develo** representative reserve systems? Conserv Biol 8(3):662–668

    Article  Google Scholar 

  • Pressey RL, Bedward M (1991) Map** the environment at different scales: benefits and costs for nature conservation. In: Margules CR, Austin MP (eds) Nature Conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 7–13

    Google Scholar 

  • Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46(5):471–478

    Article  Google Scholar 

  • Reyers B, Wessels KJ, van Jaarsveld AS (2002) An assessment of biodiversity surrogacy options in the Limpopo Province of South Africa. Afr Zool 37(2):185–195

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science 334(6056):660–664

  • Schaetzl RJ, Krist FJ, Miller BA (2012) A taxonomically based ordinal estimate of soil productivity for landscape-scale analyses. Soil Sci 177(4):288–299

    Article  CAS  Google Scholar 

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16(9):2602–2613

    Google Scholar 

  • Schloss CA, Lawler JJ, Larson ER, Papendick HL, Case MJ, Evans DM, DeLap JH, Langdon JGR, Hall SA, McRae BH (2011) Systematic conservation planning in the face of climate change: bet-hedging on the Columbia Plateau. PloS One 6(12):e28788

  • Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci USA 109(22):8606–8611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards Jr TC, Ulliman J, Wright RG (1993) Gap analysis—a geographic approach to protection of biological diversity. Wildl Monogr 123:1–41

  • Scott JM, Davis FW, McGhie RG, Wright RG, Groves C, Estes J (2001) Nature reserves: do they capture the full range of America’s biological diversity? Ecol Appl 11(4):999–1007

    Article  Google Scholar 

  • Sears MW, Raskin E, Angilletta MJ Jr (2011) The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr Comp Biol 51(5):666–675

    Article  PubMed  Google Scholar 

  • Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling M, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD (2012) Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. J Veg Sci 23(5):942–951

  • Stamper TJ, Hicke JA, Jennings M, Aycrigg J (2012) Spatial and temporal patterns of changes in protected areas across the Southwestern United States. Biodivers Conserv 22(2):343–356

    Article  Google Scholar 

  • Tingley MW, Estes LD, Wilcove DS (2013) Climate change must not blow conservation off course. Nature 500:271–272

    Article  CAS  PubMed  Google Scholar 

  • USDA SSDS (1993) Soil Survey Manual. Handbook 18. Soil Conservation Service, U.S. Dept. of Agriculture

  • USDA (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. In: Natural Resources Conservation Service (ed), Agriculture Handbook, Number 436

  • USGS (2011a) National Land Cover, version 2. http://gapanalysis.usgs.gov/data/land-cover-data/. Accessed 18 Feb 2012

  • USGS (2011b) Protected areas database of the United States (PADUS), version 1.2. http://gapanalysis.usgs.gov/data/padus-data/. Accessed 25 Apr 2012

  • Van Wynsberge S, Andrefouet S, Hamel MA, Kulbicki M (2012) Habitats as surrogates of taxonomic and functional fish assemblages in coral reef ecosystems: a critical analysis of factors driving effectiveness. PLoS One 7(7):e40997

    Article  PubMed Central  PubMed  Google Scholar 

  • Wessels KJ, Freitag S, van Jaarsveld AS (1999) The use of land facets as biodiversity surrogates during reserve selection at a local scale. Biol Conserv 89(1):21–38

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the U. S. Department of the Interior Southwest Climate Science Center. Brett Dickson, Erica Fleishman, Dave Theobald, Mark Schwartz, Paul Beier, and two anonymous reviewers provided thoughtful comments that significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Albano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, C.M. Identification of geophysically diverse locations that may facilitate species’ persistence and adaptation to climate change in the southwestern United States. Landscape Ecol 30, 1023–1037 (2015). https://doi.org/10.1007/s10980-015-0167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0167-7

Keywords

Navigation