Log in

Thermal modelling and performance evaluation of a low-grade heat-driven sorption-based atmospheric water generator under various weather conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Drinking water is scarce in many regions of the world despite the omnipresence of water in the form of vapour in large quantities in the atmosphere. Currently, majority of water harvesters use vapour compression refrigeration cycle, which is inefficient. Thus, to reduce electrical energy consumption, the idea proposed in this study is to use a sorption-based atmospheric water generator (AWG) which works on low-grade heat energy. The key component of the proposed AWG is a desiccant-coated fin tube heat exchanger (DCFTHX) which humidifies and heats the air to such an extent that the vapour present in the air can be condensed by simply bringing it in thermal contact with a surface at atmospheric temperature. Thermodynamic modelling of the proposed AWG is first presented, followed by a systematic study under various weather conditions ranging from temperatures of 6 °C to 40 °C and specific humidity from 0.004 to 0.22 kg kg d.a.−1. Results indicate that water can be produced even for specific humidity of 4 kg kg d.a.−1 (near zero dew point temperature) if the ambient temperature is low (10 °C), at regeneration temperatures of 60 and 70 °C. The highest rate of water extraction and the highest yield is 10.9 g s−1 and 62.2 kg kWh−1, respectively, under ambient conditions of 26 °C and 0.02 kg kg d.a.−1. Under the winter (when the absolute humidity is at its lowest) weather conditions of Dubai, as much as 39.3 kg of water can be produced per kWh, which translates to only 0.59 cents per kg water produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C p :

Specific heat (J kg−1 K−1)

D :

Mass diffusivity (m2s−1)

d :

Diameter (m)

f d :

Mass fraction of sorbent

h :

Heat transfer coefficient (W m−2 K−1)

H :

Height or thickness (m)

h m :

Mass transfer coefficient (m s−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of heat exchanger (m)

:

Mass flow rate (kg s−1)

P f :

Pitch (m)

qgen :

Heat flux (W m−2)

q ads :

Sorption heat (J kg−1)

r :

Tube radius (m)

r 2 :

Outer radius of the equivalent annular fin (m)

RH:

Relative humidity

T :

Temperature (°C)

t :

Time (s)

U fr :

Frontal velocity (m s−1)

W :

Sorbate uptake

X l :

Longitudinal tube-pitch (m)

X t :

Transverse tube-pitch (m)

Y :

Absolute humidity

ε d :

Desiccant porosity

η :

Efficiency

\({\eta }_{\text{m}}\) :

Efficiency of heat exchanger when no condensation occurs

ρ :

Density (kg m−3)

P :

Pressure drop (Pa)

υ r :

Pore radius of the desiccant (m)

0:

Initial value (t = 0)

1:

During dehumidification time period

2:

During regeneration time period

i:

Inner

o:

Outer

a:

Air

app:

Apparent

b:

Blower

c:

Cold

d:

Desiccant or sorbent

de:

Dehumidification

eq:

Equivalent

f:

Fin

h:

Hot

in:

In/inlet

o:

Out/outer

p:

Pump

re:

Regeneration

s:

Surface

s-avg:

Spatially averaged quantity

t:

Tube

v:

Vapour

w:

Water

DPT:

Dew point temperature

DCFTHX:

Desiccant-coated fin tube heat exchanger

FTHX:

Fin tube heat exchanger

AWG:

Atmospheric water generator

RH:

Relative humidity

References

  1. Yilmaz G, et al. Autonomous atmospheric water see** MOF matrix. Sci Adv. 2020;6(42):eabc8605. https://doi.org/10.1126/sciadv.abc8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ejeian M, Wang RZ. Adsorption-based atmospheric water harvesting. Joule. 2021;5(6):1678–703.

    Article  Google Scholar 

  3. Tu Y, Wang R, Zhang Y, Wang J. Progress and expectation of atmospheric water harvesting. Joule. 2018;2(8):1452–75. https://doi.org/10.1016/j.joule.2018.07.015.

    Article  CAS  Google Scholar 

  4. Al Hosari T, et al. The UAE cloud seeding program: a statistical and physical evaluation. Atmosphere. 2021;12(8):1013. https://doi.org/10.3390/atmos12081013.

    Article  CAS  Google Scholar 

  5. Kumar KN, Suzuki K. Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sens Environ. 2019;228:90–104. https://doi.org/10.1016/j.rse.2019.04.024.

    Article  Google Scholar 

  6. Bruintjes RT. A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull Am Meteor Soc. 1999;80(5):805–20. https://doi.org/10.1175/1520-0477(1999)080%3c0805:AROCSE%3e2.0.CO;2.

    Article  Google Scholar 

  7. Guadarrama-Cetina J, et al. Dew condensation on desert beetle skin. Eur Phys J E. 2014;37(11):109. https://doi.org/10.1140/epje/i2014-14109-y.

    Article  CAS  PubMed  Google Scholar 

  8. Magrini A, Cattani L, Cartesegna M, Magnani L. Integrated systems for air conditioning and production of drinking water – preliminary considerations. Energy Procedia. 2015;75:1659–65. https://doi.org/10.1016/j.egypro.2015.07.406.

    Article  Google Scholar 

  9. Sharan G, Beysens D, Milimouk-Melnytchouk I. A study of dew water yields on Galvanized iron roofs in Kothara (North-West India). J Arid Environ. 2007;69(2):259–69. https://doi.org/10.1016/j.jaridenv.2006.09.004.

    Article  Google Scholar 

  10. Ketaki Desai Read more at: http://timesofindia.indiatimes.com/articleshow/70005206.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst, ‘These companies are making drinking water from thin air’, Times of India, Jun. 30, 2019. [Online]. https://timesofindia.indiatimes.com/home/sunday-times/these-companies-are-making-drinking-water-from-thin-air/articleshow/70005206.cms

  11. Bergmair D, Metz SJ, De Lange HC, Van Steenhoven AA. System analysis of membrane facilitated water generation from air humidity. Desalination. 2014;339:26–33. https://doi.org/10.1016/j.desal.2014.02.007.

    Article  CAS  Google Scholar 

  12. Zhao LH, Wang RZ, Ge TS. Desiccant coated heat exchanger and its applications. Int J Refrig. 2021;130:217–32. https://doi.org/10.1016/j.ijrefrig.2021.06.008.

    Article  Google Scholar 

  13. Tu R, Liu M, Wang S, Yang X. Performance analyses and optimizations of desiccant wheel-assisted atmospheric water harvesting systems based on ideal thermodynamic cycles. Energy Convers Manag. 2021;245: 114540. https://doi.org/10.1016/j.enconman.2021.114540.

    Article  Google Scholar 

  14. Milani D, Qadir A, Vassallo A, Chiesa M, Abbas A. Experimentally validated model for atmospheric water generation using a solar assisted desiccant dehumidification system. Energy Build. 2014;77:236–46. https://doi.org/10.1016/j.enbuild.2014.03.041.

    Article  Google Scholar 

  15. Qi H, et al. An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv Mater. 2019;31(43):1903378. https://doi.org/10.1002/adma.201903378.

    Article  CAS  Google Scholar 

  16. Gido B, Friedler E, Broday DM. Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environ Sci Technol. 2016;50(15):8362–7. https://doi.org/10.1021/acs.est.6b01280.

    Article  CAS  PubMed  Google Scholar 

  17. Mulchandani A, Malinda S, Edberg J, Westerhoff P. Sunlight-driven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants. Environ Sci Nano. 2020;7(9):2584–94. https://doi.org/10.1039/D0EN00463D.

    Article  CAS  Google Scholar 

  18. Elashmawy M, Alshammari F. Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. J Clean Prod. 2020;256: 120329. https://doi.org/10.1016/j.jclepro.2020.120329.

    Article  CAS  Google Scholar 

  19. Shemelin V, Pokorny N, Novotny J. Experimental investigation of silica gel and zeolite coated fin-tube heat exchangers under arid climatic conditions. Energy Rep. 2022;8:331–41. https://doi.org/10.1016/j.egyr.2022.06.115.

    Article  Google Scholar 

  20. Entezari A, Ejeian M, Wang R. Modifying water sorption properties with polymer additives for atmospheric water harvesting applications. Appl Therm Eng. 2019;161: 114109. https://doi.org/10.1016/j.applthermaleng.2019.114109.

    Article  CAS  Google Scholar 

  21. Kim H, et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun. 2018;9(1):1191. https://doi.org/10.1038/s41467-018-03162-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim H, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science. 2017;356(6336):430–4. https://doi.org/10.1126/science.aam8743.

    Article  CAS  PubMed  Google Scholar 

  23. Entezari A, Ejeian M, Wang R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater Lett. 2020;2(5):471–7. https://doi.org/10.1021/acsmaterialslett.9b00315.

    Article  CAS  Google Scholar 

  24. Agrawal A, Kumar A, Parekh AD. Experimental investigation of solar driven atmospheric water generation system based on air-to-air heat exchanger. Energy. 2023;271: 127062. https://doi.org/10.1016/j.energy.2023.127062.

    Article  Google Scholar 

  25. He S, Chen W, Yang W, Zhao X. Review of hygroscopic coating on aluminum fin surface of air conditioning heat exchanger. Appl Sci. 2021;11(11):5193. https://doi.org/10.3390/app11115193.

    Article  CAS  Google Scholar 

  26. Vivekh P, Kumja M, Bui DT, Chua KJ. Recent developments in solid desiccant coated heat exchangers—a review. Appl Energy. 2018;229:778–803. https://doi.org/10.1016/j.apenergy.2018.08.041.

    Article  Google Scholar 

  27. Jagirdar M, Lee PS. Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger. Appl Energy. 2018;212:401–15. https://doi.org/10.1016/j.apenergy.2017.12.038.

    Article  Google Scholar 

  28. Sphaier LA, Worek WM. Analysis of heat and mass transfer in porous sorbents used in rotary regenerators. Int J Heat Mass Transf. 2004;47(14–16):3415–30. https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.016.

    Article  CAS  Google Scholar 

  29. Ge TS, Dai YJ, Wang RZ. Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model. Energy Convers Manag. 2011;52(6):2329–38. https://doi.org/10.1016/j.enconman.2010.12.047.

    Article  Google Scholar 

  30. Shah RK, Sekulic DP. Fundamentals of heat exchanger design. New York: Wiley; 2003.

    Book  Google Scholar 

  31. Wang C, Chi K, Chang C. Heat transfer and friction characteristics of plain fin-and- tube heat exchangers, part II : Correlation. Int J Heat Mass Transf. 2000;43:2693–700.

    Article  CAS  Google Scholar 

  32. Incropera FP, Incropera FP, editors. Fundamentals of heat and mass transfer. 6th ed. Hoboken: Wiley; 2007.

    Google Scholar 

  33. McQuiston FC, Parker JD, Spitler JD, Taherian H. Heating, ventilating, and air conditioning: analysis and design. New York: Wiley; 2023.

    Google Scholar 

  34. Rishel JB, Durkin TH, Kincaid BL. HVAC pump handbook. 2nd ed. Cambridge: McGraw-Hill; 2006.

    Google Scholar 

  35. Wang F, Yoshida H, Miyata M. Total energy consumption model of fan subsystem suitable for continuous commissioning. ASHRAE Trans. 2004;110(PART 1, Clark 1985):357–64.

    Google Scholar 

  36. Jagirdar M, Lee PS, Padding JT. Performance of an internally cooled and heated desiccant-coated heat and mass exchanger: Effectiveness criteria and design methodology. Appl Therm Eng. 2021;188: 116593. https://doi.org/10.1016/j.applthermaleng.2021.116593.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support granted by SERB, file number SRG/2021/000887.

Author information

Authors and Affiliations

Authors

Contributions

Karandeep Singh contributed to conceptualization of the system, the simulation part of the work and drafting of the results and discussion part; Emma Mariam Punnoose contributed to the literature review and writing of the introduction part as well as analysis of the results; Mrinal K. Jagirdar contributed to the development of the thermal model, conceptualization of the proposed system and final editing.

Corresponding author

Correspondence to Mrinal K. Jagirdar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Punnoose, E.M. & Jagirdar, M.K. Thermal modelling and performance evaluation of a low-grade heat-driven sorption-based atmospheric water generator under various weather conditions. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13354-7

Keywords

Navigation