Log in

Thermo-hydraulic performance evaluation and comparison of SiC-MWCNT and Al2O3-MWCNT Non-Newtonian hybrid nanofluids using a heat exchanger equipped with helically corrugated tubes: an experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present investigation entails experimental evaluations for examining the heat transfer and flow attributes of hybrid nanofluids in a heat exchanger equipped with helically corrugated tubes (HCTs) under laminar flow conditions. The study includes evaluating the effect of various factors, such as the particle volume fraction, pseudoplastic behaviour of the fluid, the choice of the working fluid and geometric properties of the heat exchanger tube. The study specifically focuses on two types of hybrid nanofluids: SiC-MWCNT and Al2O3-MWCNT, with a water-ethylene glycol mixture. Three helically corrugated tubes have been introduced, namely HCT-1, HCT-2, and HCT-3. Corrugation pitches are chosen as 27.5, 12.1 and 9.5 mm and corrugation heights as 1.04, 1.57 and 1.97 mm. The findings indicate that, out of the different tubes employed, HCT-3 demonstrated the maximum rise in the Nusselt number, exhibiting a 61.3% increase compared to the smooth tube. This is due to increased corrugation height and reduced corrugated pitch which facilitates rapid mixture flow thereby improving its heat transfer rate. Both investigated hybrid nanofluids exhibit a transition from Newtonian to shear-thinning behaviour beyond a volume fraction of φ = 0.1% in a water-ethylene glycol mixture. Prior to this volume fraction, the nanofluids exhibit Newtonian behaviour. Both the nanofluids show a thermal performance factor (THPF) exceeding unity. Moreover, SiC-MWCNT hybrid nanofluid reveals the highest THPF of 1.97 for HCT-3 at a Reynolds number = 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

HCT:

Helically corrugated tube

THPF:

Thermal-hydraulic performance factor

MWCNT:

Multy-walled carbon nanotubes

SiC:

Silicon carbide

Al2O3 :

Aluminium oxide

ST:

Smooth tube

lpm:

Litre per minute

CTHE:

Concentric tube heat exchanger

L :

Length (mm)

d :

Diameter (mm)

p :

Pitch of HCT (mm)

e :

Corrugation height (mm)

P :

Pressure (Pa)

g :

Acceleration due to gravity (m s2)

T :

Temperature/K

h :

Heat transfer coefficient (W m2 K1)

t :

Temperature (°C)

k :

Thermal conductivity (W m1 K1)

C p :

Specific heat capacity (J kg1 K1)

U :

Velocity (m s1)

f :

Friction factor

n :

Power law index

m :

Mass (g)

Re:

Reynolds number

Nu:

Nusselt number

\(\dot{q}\) :

Heat flux (kW m2)

w :

Mass ratio

A :

Surface area

τ :

Shear stress (Pa)

µ :

Dynamic viscosity (Pa s)

\(\dot{\gamma }\) :

Shear strain rate (s1)

ρ :

Density (kg m3)

φ :

Volume fraction

c, i:

Cold fluid inlet

c, o:

Cold fluid outlet

h, i:

Hot fluid inlet

h, o:

Hot fluid outlet

nf:

Nanofluid

np:

Nanoparticle (Al2O3 or SiC)

bf:

Base fluid

hy:

Hybrid nanoparticle

References

  1. Chhabra RP, Richardson JF. Non-Newtonian flow and applied rheology: engineering applications. Oxford: Butterworth-Heinemann; 2011.

    Google Scholar 

  2. Kareem ZS, Jaafar MM, Lazim TM, Abdullah S, Abdulwahid AF. Passive heat transfer enhancement review in corrugation. Exp Thermal Fluid Sci. 2015;68:22–38. https://doi.org/10.1016/j.expthermflusci.2015.04.012.

    Article  Google Scholar 

  3. Hameed VM, Hussein MA. Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat exchanger. Appl Therm Eng. 2017;122:484–91. https://doi.org/10.1016/j.applthermaleng.2017.04.119.

    Article  Google Scholar 

  4. Ma Q, Yang Y, Zuo Y. Thermal performance optimization of heat exchanger with mixed cross-corrugated sinusoidal plate channels. Appl Therm Eng. 2021;195: 117138. https://doi.org/10.1016/j.applthermaleng.2021.117138.

    Article  Google Scholar 

  5. Gupta M, Kumar R, Arora N, Kumar S, Dilbagi N. Forced convective heat transfer of MWCNT/water nanofluid under constant heat flux: an experimental investigation. Arab J Sci Eng. 2016;41:599–609. https://doi.org/10.1007/s13369-015-1699-5.

    Article  CAS  Google Scholar 

  6. Tamilvanan A, Balamurugan K, Ponappa K, Madhan Kumar B. Using response surface methodology in synthesis of ultrafine copper nanoparticles by electrolysis. Int J Nanosci. 2016;15(01n02):1650001. https://doi.org/10.1142/S0219581X16500010.

    Article  CAS  Google Scholar 

  7. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne national lab (ANL), Argonne, IL (United States); 1995.

  8. Gupta M, Arora N, Kumar R, Kumar S, Dilbaghi N. A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. Int J Mech Mater Eng. 2014;9:1–21. https://doi.org/10.1186/s40712-014-0011-x.

    Article  CAS  Google Scholar 

  9. Balaji N, Kumar PSM, Velraj R, Kulasekharan N. Experimental investigations on the improvement of an air conditioning system with a nanofluid-based intercooler. Arab J Sci Eng. 2015;40:1681–93. https://doi.org/10.1007/s13369-015-1644-7.

    Article  CAS  Google Scholar 

  10. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  11. Noghrehabadi A, Pourrajab R. Experimental investigation of forced convective heat transfer enhancement of γ-Al2O3/water nanofluid in a tube. J Mech Sci Technol. 2016;30:943–52. https://doi.org/10.1007/s12206-016-0148-z.

    Article  Google Scholar 

  12. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.015.

    Article  CAS  Google Scholar 

  13. Xu H, Gong L, Huang S, Xu M. Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int J Heat Mass Transf. 2015;83:399–407. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.024.

    Article  Google Scholar 

  14. Shahsavani E, Afrand M, Kalbasi R. Using experimental data to estimate the heat transfer and pressure drop of Non-Newtonian nanofluid flow through a circular tube: applicable for use in heat exchangers. Appl Therm Eng. 2018;129:1573–81. https://doi.org/10.1016/j.applthermaleng.2017.10.140.

    Article  CAS  Google Scholar 

  15. Krishnan SSJ, Momin M, Nwaokocha C, Sharifpur M, Meyer JP. An empirical study on the persuasive particle size effects over the multi-physical properties of monophase MWCNT-Al2O3 hybridized nanofluids. J Mol Liq. 2022;361: 119668. https://doi.org/10.1016/j.molliq.2022.119668.

    Article  CAS  Google Scholar 

  16. Jana S, Salehi-Kho** A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1–2):45–55. https://doi.org/10.1016/j.tca.2007.06.009.

    Article  CAS  Google Scholar 

  17. Chopkar M, Kumar S, Bhandari DR, Das PK, Manna I. Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater Sci Eng B. 2007;139(2–3):141–8. https://doi.org/10.1016/j.mseb.2007.01.048.

    Article  CAS  Google Scholar 

  18. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388(1–3):41–8. https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  CAS  Google Scholar 

  19. Venkitaraj KP, Suresh S, Alwin Mathew T, Bibin BS, Abraham J. An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts. Heat Mass Transf. 2018;54:813–29. https://doi.org/10.1007/s00231-017-2174-5.

    Article  CAS  Google Scholar 

  20. Arunachalam U, Edwin M. Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert. Heat Mass Transf. 2018;54(3):673–83. https://doi.org/10.1007/s00231-017-2162-9.

    Article  CAS  Google Scholar 

  21. Nagarajan PK. Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications. Appl Surf Sci. 2019;489:560–75. https://doi.org/10.1016/j.apsusc.2019.06.038.

    Article  CAS  Google Scholar 

  22. Krishnan SSJ, Nagarajan PK. Convective thermal performance and entropy generation analysis on solution combustion synthesis derived magnesia nano-dispersion flow susceptible by a micro-fin tube. Exp Thermal Fluid Sci. 2019;101:1–15. https://doi.org/10.1016/j.expthermflusci.2018.10.002.

    Article  CAS  Google Scholar 

  23. Krishnan SJS, Nagarajan PK. Convective performance and particle effect analysis on aqua-antifreeze based oxomagnesium nanofluids while flowing through a micro-fin tube with twisted tapes. J Therm Anal Calorim. 2019;138:1175–91. https://doi.org/10.1007/s10973-019-08336-z.

    Article  CAS  Google Scholar 

  24. Anbu S, Venkatachalapathy S, Suresh S. Heat transfer and pressure drop studies of TiO2/DI water nanofluids in helically corrugated tubes using spiraled rod inserts. Heat Mass Transf. 2018;54:1301–11. https://doi.org/10.1007/s00231-017-2230-1.

    Article  CAS  Google Scholar 

  25. Laohalertdecha S, Wongwises S. An experimental study into the evaporation heat transfer and flow characteristics of R-134a refrigerant flowing through corrugated tubes. Int J Refrig. 2011;34(1):280–91. https://doi.org/10.1016/j.ijrefrig.2010.07.012.

    Article  CAS  Google Scholar 

  26. Rainieri S, Bozzoli F, Pagliarini G. Experimental investigation on the convective heat transfer in straight and coiled corrugated tubes for highly viscous fluids: preliminary results. Int J Heat Mass Transf. 2012;55(1–3):498–504. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.030.

    Article  CAS  Google Scholar 

  27. Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers. Appl Therm Eng. 2017;110:1075–90. https://doi.org/10.1016/j.applthermaleng.2016.09.027.

    Article  Google Scholar 

  28. Rainieri S, Pagliarini G. Convective heat transfer to temperature dependent property fluids in the entry region of corrugated tubes. Int J Heat Mass Transf. 2002;45(22):4525–36. https://doi.org/10.1016/S0017-9310(02)00156-4.

    Article  Google Scholar 

  29. Laohalertdecha S, Wongwises S. Condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes. Int J Heat Mass Transf. 2011;54(11–12):2673–82. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.034.

    Article  CAS  Google Scholar 

  30. Painuly A, Mishra NK, Zainith P. Heat transfer enhancement in a helically corrugated tube by employing w/eg based Non-Newtonian hybrid nanofluid under turbulent conditions. J Enhanc Heat Transf. 2022. https://doi.org/10.1615/JEnhHeatTransf.2021039935.

    Article  Google Scholar 

  31. Zainith P, Mishra NK. Evaluation of thermal performance of conically shaped micro helical tubes using Non-Newtonian nanofluids—a numerical study. J Therm Sci Eng Appl. 2022;14(8): 081019. https://doi.org/10.1115/1.4054643.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.022.

    Article  CAS  Google Scholar 

  33. Tiwari AK, Ghosh P, Sarkar J. Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int J Heat Mass Transf. 2015;1(89):1110–8. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.118.

    Article  CAS  Google Scholar 

  34. Li X, Zou C. Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: an experimental investigation. Int J Heat Mass Transf. 2016;1(101):412–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.089.

    Article  CAS  Google Scholar 

  35. Chen W, Zou C, Li X. Application of large-scale prepared MWCNTs nanofluids in solar energy system as volumetric solar absorber. Solar Energy Mater Solar Cells. 2019;15(200):109931. https://doi.org/10.1016/j.solmat.2019.109931.

    Article  CAS  Google Scholar 

  36. Nikkhah Z, Karimipour A, Safaei MR, Forghani-Tehrani P, Goodarzi M, Dahari M, Wongwises S. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int Commun Heat Mass Transf. 2015;1(68):69–77. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.008.

    Article  CAS  Google Scholar 

  37. Asadi A, Pourfattah F, Szilágyi IM, Afrand M, Żyła G, Ahn HS, Mahian O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: a comprehensive review. Ultrason Sonochem. 2019;58:104701. https://doi.org/10.1016/j.ultsonch.2019.104701.

    Article  CAS  PubMed  Google Scholar 

  38. Mahbubul IM, Saidur R, Amalina MA, Elcioglu EB, Okutucu-Ozyurt T. Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrason Sonochem. 2015;26:361–9. https://doi.org/10.1016/j.ultsonch.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  39. Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.024.

    Article  CAS  Google Scholar 

  40. Ajarostaghi SSM, Zaboli M, Nourbakhsh M. Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. J Therm Anal Calorim. 2021;143:1583–97. https://doi.org/10.1007/s10973-020-10205-z.

    Article  CAS  Google Scholar 

  41. Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf. 2014;59:30–8. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.007.

    Article  CAS  Google Scholar 

  42. Sonawane SS, Khedkar RS, Wasewar KL. Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. Int Commun Heat Mass Transf. 2013;49:60–8. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001.

    Article  CAS  Google Scholar 

  43. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes: a novel correlation for the Non-Newtonian nanofluid. J Therm Anal Calorim. 2018;131(2):1177–85. https://doi.org/10.1007/s10973-017-6711-8.

    Article  CAS  Google Scholar 

  44. Brodnianska Z. Experimental investigation of convective heat transfer between corrugated heated surfaces of rectangular channel. Heat Mass Transf. 2019;55:3151–64. https://doi.org/10.1007/s00231-019-02649-3.

    Article  CAS  Google Scholar 

  45. Qi C, Wan YL, Li CY, Han DT, Rao ZH. Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube. Int J Heat Mass Transf. 2017;115:1072–84. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.098.

    Article  CAS  Google Scholar 

  46. Rabby MII, Sharif MAR, Hossain F. Numerical study of laminar convective heat transfer from a corrugated pipe into an Al2O3–AlN/H2O hybrid nanofluid. Case Stud Therm Eng. 2022;39: 102454. https://doi.org/10.1016/j.csite.2022.102454.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AP contributed to execution of experiments and preparation of the draft of manuscript. NKM contributed to revision of draft manuscript, rectification, editing, and supervision. PZ contributed to revision of draft manuscript and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Niraj Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Uncertainty analysis

Appendix 1: Uncertainty analysis

The uncertainty in determining the friction factor is calculated as follows:

$$ \frac{\delta f}{f} = \sqrt {\left( {\frac{\delta P}{P}} \right)^{2} + \left( {\frac{\delta \rho }{\rho }} \right)^{2} + \left( {\frac{\delta U}{U}} \right)^{2} + \left( {\frac{{\delta A_{s} }}{{A_{s} }}} \right)^{2} + \left( {\frac{\delta L}{L}} \right)^{2} } $$
$$ = \sqrt {\left( {2.7845} \right)^{2} + \left( {0.11} \right)^{2} + \left( {0.6268} \right)^{2} + \left( {1.429} \right)^{2} + \left( {1.5754} \right)^{2} } $$
$$ = 3.7\% $$

The uncertainty in determining the Nusselt number is calculated as follows:

$$ \frac{{\delta {\text{Nu}}}}{{{\text{Nu}}}} = \sqrt {\left( {\frac{\delta h}{h}} \right)^{2} + \left( {\frac{\delta k}{k}} \right)^{2} } = \sqrt {\left( {2.7759} \right)^{2} + \left( {1.6186} \right)^{2} } = 3.3\% $$

Similarly, uncertainty associated with the Reynolds number can be calculated as:

$$ \frac{{\delta {\text{Re}}}}{{{\text{Re}}}} = \sqrt {\left( {\frac{\delta \rho }{\rho }} \right)^{2} + \left( {\frac{\delta \mu }{\mu }} \right)^{2} + \left( {\frac{\delta U}{U}} \right)^{2} } = \sqrt {\left( {0.11} \right)^{2} + \left( {0.1} \right)^{2} + \left( {0.6268} \right)^{2} } = 0.644\% $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Painuly, A., Mishra, N.K. & Zainith, P. Thermo-hydraulic performance evaluation and comparison of SiC-MWCNT and Al2O3-MWCNT Non-Newtonian hybrid nanofluids using a heat exchanger equipped with helically corrugated tubes: an experimental study. J Therm Anal Calorim 149, 3965–3980 (2024). https://doi.org/10.1007/s10973-024-12960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12960-9

Keywords

Navigation