Log in

Exploratory review of the heat exchanger and cooler geometrical effect on energy harvesting from automobile exhaust using thermoelectric generators

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To shift the usual path of ejection of the energy accompanying the exhausts of internal combustion engines, extensive studies have been carried out regarding the powder metallurgy technology used for the manufacturing and forming of various thermoelectric generator couple shapes and how to enhance their power efficiency. But in the present sco** review, the goal is to explain how the temperature difference on the thermoelectric generator sides was affected by improving the external and internal structures of the hot side (heat exchanger) and cold side (cooler) to enhance the amount of harvested power. It was also discussed how cooling techniques and the kinds of metals used to make heat exchangers and coolers affected the output power was explained too. The sco** review was devoted to displaying previous works and systems on how to harvest energy from the exhausts of automobile internal combustion engines and reviewing the impact of the dimensions, arrangements, and shapes of internal obstacles or fins on the amount of temperature difference and produced power. The conclusions are summarized as a path map and viewpoints for the future work of researchers in designing heat exchangers and coolers and profitable investment from the data that has been prepared and summarized in tables (2 and 4). It should also be noted two major factors, the first being the pressure drop, which is necessary to avoid engine power losses across the heat exchanger, and the second being the reduction of extra mass and fuel consumption due to the installation of the heat exchanger, it is possible to design the muffler so that the thermoelectric generators can be installed on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79

Similar content being viewed by others

Abbreviations

Α:

Tilt angle

Α:

Cross section area/m2

D:

Diameter/m

h:

Convection heat transfer coefficient/W m2 k1

I:

Current (Ampere)

K:

Conduction heat transfer coefficient/W m1 k1

k:

Turbulent kinetic energy/m2 s3

L :

Channel number

m :

Exhaust gas mass/gs1

\(\dot{m}\) :

Mass flow rate/gs1

N:

Baffles number

n :

Number

P:

Power/W

P:

Pressure/Pa

Q:

Heat flow/W

R:

Resistance/Ohm

S:

Model design area/m2

T :

Temperature/oC

V:

Voltage/V

W:

Watt

x, y, z:

Cartesian coordinates/m

α :

Seebeck coefficient/V k1

α :

Tilt angle

β :

Baffler Angle

\(\Delta\) :

Difference

ɛ :

Turbulent dissipation rate/m2 s3

ƞ :

Conversion efficiency

Ω:

Ohm

b:

Back

C:

Cold

f:

Fluid

fins:

Fins

gas:

Gas

H:

Hot

h:

Hydraulic

hyd:

Hydraulic

int:

Internal

L:

Load

max:

Maximum

n:

Negative thermoelectric generator pole

net:

Net

OC:

Open

opt:

Extreme or optimum

p:

Positive thermoelectric generator pole

sum:

Received heat gain

TEM:

Thermoelectric model

teg:

Thermoelectric generator

water:

Water

AC, WC:

Air and water cooling

ATEG:

Automotive thermoelectric generator

Bi2Te3 :

Bismuth telluride

CO&COU:

Co-flow and counterflow

dev:

Power deviation

EGR:

Exhaust gas recirculation

HE:

Heat exchanger

HEX:

Heat exchanger

IFTEG:

Intermediate fluid thermoelectric generator

Nu:

Nusselt number

Re:

Reynolds number

rpm:

Revolution per minute

TEG:

Thermoelectric generator

TTEG:

Traditional thermoelectric generator

TEM:

Thermoelectric module

References

  1. Karri MA. Modeling of an automotive exhaust thermoelectric generator. 2005.

  2. Conceptual design of thermoelectric power generator (Teg ) for automotive waste heat recovery.

  3. Hoseinzadeh S, Heyns PS. Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Eng Fail Anal. 2020;113:104548. https://doi.org/10.1016/j.engfailanal.2020.104548.

    Article  Google Scholar 

  4. Jordaan H, Stephan Heyns P, Hoseinzadeh S. numerical development of a coupled one-dimensional/three-dimensional computational fluid dynamics method for thermal analysis with flow maldistribution. J Therm Sci Eng Appl. 2021. https://doi.org/10.1115/1.4049040.

    Article  Google Scholar 

  5. Sivaprahasam D, Harish S, Gopalan R, Sundararajan G. Automotive waste heat recovery by thermoelectric generator technology. In: Aranguren P, editor. Bringing thermoelectr into real. London: InTechOpen; 2018.

    Google Scholar 

  6. Borcuch M, Musiał M, Gumuła S, Sztekler K, Wojciechowski K. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system. Appl Therm Eng. 2017;127:1355–63. https://doi.org/10.1016/j.applthermaleng.2017.08.147.

    Article  Google Scholar 

  7. Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Convers Manag. 2014;85:85–101. https://doi.org/10.1016/j.enconman.2014.05.061.

    Article  Google Scholar 

  8. Hatami M, Ganji DD, Gorji-Bandpy M. CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger. Neural Comput Appl. 2014;25:2079–90.

    Article  Google Scholar 

  9. Lee S, Bae C. Design of a heat exchanger to reduce the exhaust temperature in a spark-ignition engine. Int J Therm Sci. 2008;47:468–78.

    Article  CAS  Google Scholar 

  10. Hossein Zolfagharnasab M, Zamani Pedram M, Hoseinzadeh S, Vafai K. Application of porous-embedded shell and tube heat exchangers for the waste heat recovery systems. Appl Therm Eng. 2022;211:118452. https://doi.org/10.1016/j.applthermaleng.2022.118452.

    Article  Google Scholar 

  11. Lu C, Wang S, Chen C, Li Y. Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator. Appl Therm Eng. 2015;89:270–9. https://doi.org/10.1016/j.applthermaleng.2015.05.086.

    Article  Google Scholar 

  12. Wang Y, Li S, Zhang Y, Yang X, Deng Y, Su C. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator. Energy Convers Manag. 2016;126:266–77. https://doi.org/10.1016/j.enconman.2016.08.009.

    Article  Google Scholar 

  13. Luo D, Wang R, Yu W, Sun Z, Meng X. Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery. Appl Therm Eng. 2019;153:837–47. https://doi.org/10.1016/j.applthermaleng.2019.03.060.

    Article  Google Scholar 

  14. Shishov KA. Selection of the design of a hot heat exchanger of an automotive thermoelectric generator for an urban driving cycle. J Phys Conf Ser. 2019;1410:6–12.

    Article  Google Scholar 

  15. Sheikh R, Gholampour S, Fallahsohi H, Goodarzi M, Mohammad Taheri M, Bagheri M. Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger. J Therm Anal Calorim. 2021;143:523–33. https://doi.org/10.1007/s10973-019-09253-x.

    Article  CAS  Google Scholar 

  16. Yan SR, Moria H, Asaadi S, Sadighi Dizaji H, Khalilarya S, Jermsittiparsert K. Performance and profit analysis of thermoelectric power generators mounted on channels with different cross-sectional shapes. Appl Therm Eng. 2020;176:115455. https://doi.org/10.1016/j.applthermaleng.2020.115455.

    Article  Google Scholar 

  17. Wang J, Song X, Li Y, Zhang C, Zhao C, Zhu L. Modeling and analysis of thermoelectric generators for diesel engine exhaust heat recovery system. J Energy Eng. 2020;146:1–10.

    Article  CAS  Google Scholar 

  18. Love ND, Szybist JP, Sluder CS. Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery. Appl Energy. 2012;89:322–8. https://doi.org/10.1016/j.apenergy.2011.07.042.

    Article  CAS  Google Scholar 

  19. Zhang Y, Cleary M, Wang X, Kempf N, Schoensee L, Yang J, et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers Manag. 2015;105:946–50. https://doi.org/10.1016/j.enconman.2015.08.051.

    Article  Google Scholar 

  20. Li Y, Wang S, Zhao Y, Lu C. Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators. Appl Energy. 2017;207:634–42. https://doi.org/10.1016/j.apenergy.2017.06.089.

    Article  CAS  Google Scholar 

  21. Lu X, Yu X, Qu Z, Wang Q, Ma T. Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery. Energy Convers Manag. 2017;150:403–14. https://doi.org/10.1016/j.enconman.2017.08.030.

    Article  Google Scholar 

  22. Choi Y, Negash A, Kim TY. Waste heat recovery of diesel engine using porous medium-assisted thermoelectric generator equipped with customized thermoelectric modules. Energy Convers Manag. 2019;197:111902. https://doi.org/10.1016/j.enconman.2019.111902.

    Article  CAS  Google Scholar 

  23. Ramírez R, Gutiérrez AS, Cabello Eras JJ, Valencia K, Hernández B, Duarte FJ. Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. J Clean Prod. 2019;241:118412.

    Article  Google Scholar 

  24. Generators TE, Tegs M. Experimental study on waste heat recovery from an IC engine using thermoelectric technology. Therm Sci. 2011;15(4):1011–22.

    Article  Google Scholar 

  25. Su CQ, Wang WS, Liu X, Deng YD. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators. Case Stud Therm Eng. 2014;4:85–91.

    Article  Google Scholar 

  26. Liu X, Deng YD, Zhang K, Xu M, Xu Y, Su CQ. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Appl Therm Eng. 2014;71:364–70.

    Article  Google Scholar 

  27. Bai S, Lu H, Wu T, Yin X, Shi X, Chen L. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators. Case Stud Therm Eng. 2014;4:99–112. https://doi.org/10.1016/j.csite.2014.07.003.

    Article  Google Scholar 

  28. Fernández-Yañez P, Armas O, Capetillo A, Martínez-Martínez S. Thermal analysis of a thermoelectric generator for light-duty diesel engines. Appl Energy. 2018;226:690–702. https://doi.org/10.1016/j.apenergy.2018.05.114.

    Article  Google Scholar 

  29. Wang Y, Li S, **e X, Deng Y, Liu X, Su C. Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger. Appl Energy. 2018;218:391–401. https://doi.org/10.1016/j.apenergy.2018.02.176.

    Article  Google Scholar 

  30. Garud KS, Seo JH, Patil MS, Bang YM, Pyo YD, Cho CP, et al. Thermal–electrical–structural performances of hot heat exchanger with different internal fins of thermoelectric generator for low power generation application. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09553-7.

    Article  Google Scholar 

  31. Science K, Journal E, Erdogan B. Experimental and numerical analysis of using thermoelectric generator modules on hexagonal exhaust heat exchanger. Karaelmas Fen ve Mühendislik Dergisi. 2021;11:54–60.

    Google Scholar 

  32. Hoseinzadeh S, Garcia DA. Numerical analysis of thermal, fluid, and electrical performance of a photovoltaic thermal collector at new micro-channels geometry. J Energy Resour Technol Trans ASME. 2021;144:1–10.

    Google Scholar 

  33. Pfeiffelmann B, Benim AC, Joos F. Water-cooled thermoelectric generators for improved net output power: a review. Energies. 2021;14(24):8329.

    Article  CAS  Google Scholar 

  34. Sukprapaporn B, Maneechot P, Ketjoy N, Vaivudh S. A suitable heat duct shape for a thermoelectric generator cooling system. J Renew Energy Smart Grid Technol. 2014;9(1):19–30.

    Google Scholar 

  35. Su CQ, Xu M, Wang WS, Deng YD, Liu X, Tang ZB. Optimization of cooling unit design for automotive exhaust-based thermoelectric generators. J Electron Mater. 2015;44:1876–83.

    Article  CAS  Google Scholar 

  36. He W, Wang S, Lu C, Zhang X, Li Y. Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system. Appl Energy. 2016;162:1251–8. https://doi.org/10.1016/j.apenergy.2015.03.036.

    Article  Google Scholar 

  37. Du Q, Diao H, Niu Z, Zhang G, Shu G, Jiao K. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine. Energy Convers Manag. 2015;101:9–18. https://doi.org/10.1016/j.enconman.2015.05.036.

    Article  Google Scholar 

  38. Alizadeh A, Ghadamian H, Aminy M, Hoseinzadeh S, Khodayar Sahebi H, Sohani A. An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station. Energy. 2022;252:123959. https://doi.org/10.1016/j.energy.2022.123959.

    Article  Google Scholar 

  39. Aranguren P, Astrain D, Rodríguez A, Martínez A. Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber. Appl Energy. 2015;152:121–30. https://doi.org/10.1016/j.apenergy.2015.04.077.

    Article  Google Scholar 

  40. He W, Wang S, Zhang X, Li Y, Lu C. Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat. Energy. 2015;91:1–9. https://doi.org/10.1016/j.energy.2015.08.022.

    Article  Google Scholar 

  41. Qiang JW, Yu CG, Deng YD, Su CQ, Wang YP, Yuan XH. Multi-objective optimization design for cooling unit of automotive exhaust-based thermoelectric generators. J Electron Mater. 2016;45:1679–88.

    Article  CAS  Google Scholar 

  42. Meng JH, Wang XD, Chen WH. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery. Energy Convers Manag. 2016;120:71–80. https://doi.org/10.1016/j.enconman.2016.04.080.

    Article  Google Scholar 

  43. Su CQ, Zhu DC, Deng YD, Wang YP, Liu X. Effect of cooling units on the performance of an automotive exhaust-based thermoelectric generator. J Electron Mater. 2017;46:2822–31.

    Article  CAS  Google Scholar 

  44. Wang L, Romagnoli A. Cooling system investigation of thermoelectric generator used for marine waste heat recovery. 2016 IEEE 2nd Annu South Power Electron Conf SPEC 2016. 2016; 1–6.

  45. Kunt MA, Gunes H. Experimental investigation of the performance of different heat exchangerprofiles in the waste heat recovery system with thermoelectric generator for automobile exhaust systems. Int J Mech Eng. 2017;4:1–5.

    Article  Google Scholar 

  46. Khripach NA, Korotkov VS, Papkin IA. Nikolay Anatolyevich Khripach, Viktor Sergeevich Korotkov and Igor Arkadyevich Papkin, thermoelectric cooling radiator for internal combustion engine. Int J Mech Eng Technol. 2017;8:668–75.

    Google Scholar 

  47. He W, Guo R, Takasu H, Kato Y, Wang S. Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems. Energy. 2019;175:1153–63.

    Article  Google Scholar 

  48. Hilmin MNHM, Remeli MF, Singh B, Affandi NDN. Thermoelectric power generations from vehicle exhaust gas with TiO2 nanofluid cooling. Therm Sci Eng Prog. 2020;18:100558.

    Article  Google Scholar 

  49. Zhao Y, Fan Y, Ge M, **e L, Li Z, Yan X, et al. Thermoelectric performance of an exhaust waste heat recovery system based on intermediate fluid under different cooling methods. Case Stud Therm Eng. 2021;23:100811. https://doi.org/10.1016/j.csite.2020.100811.

    Article  Google Scholar 

  50. Yang W, Zhu W, Yang Y, Huang L, Shi Y, **e C. Thermoelectric performance evaluation and optimization in a concentric annular thermoelectric generator under different cooling methods. Energies. 2022;15:2231.

    Article  CAS  Google Scholar 

  51. Nazarieh M, Kariman H, Hoseinzadeh S. Numerical simulation of fluid dynamic performance of turbulent flow over Hunter turbine with variable angle of blades. Int J Numer Methods Heat Fluid Flow. 2023;33:153–73. https://doi.org/10.3390/en15062.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Ahmed S. Alyasiry from engineering technical college for providing data sources, Prof. Salwan Obaid Waheed Khafaji, Prof. Farooq Hassan Ali, Hussein hamzah rashead from the Department of Mechanical Engineering, University of Babylon, Iraq, and the engineer Esraa K. Hassan from the Office of Housing and Construction of Babylon City, Iraq, who provided help during the writing of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Y. Jabbar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, M.Y., Ahmed, S.Y. Exploratory review of the heat exchanger and cooler geometrical effect on energy harvesting from automobile exhaust using thermoelectric generators. J Therm Anal Calorim 148, 6607–6644 (2023). https://doi.org/10.1007/s10973-023-12212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12212-2

Keywords

Navigation